119 research outputs found
A climate for contemporary evolution
A new study of divergence in freshwater fish provides strong evidence of rapid, temperature-mediated adaptation. This study is particularly important in the ongoing debate over the extent and significance of evolutionary response to climate change because divergence has occurred in relatively few generations in spite of ongoing gene flow and in the aftermath of a significant genetic bottleneck, factors that have previously been considered obstacles to evolution. Climate change may thus be more likely to foster contemporary evolutionary responses than has been anticipated, and I argue here for the importance of investigating their possible occurrence
Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT)
Polymeric cytotoxic conjugates are being developed with the aim of preferential delivery of the anticancer agent to tumour. MAG-CPT comprises the topoisomerase I inhibitor camptothecin linked to a water-soluble polymeric backbone methacryloylglycynamide ( average molecular weight 18 kDa, 10% CPT by weight). It was administered as a 30-min infusion once every 4 weeks to patients with advanced solid malignancies. The objectives of our study were to determine the maximum tolerated dose, dose-limiting toxicities, and the plasma and urine pharmacokinetics of MAG-CPT, and to document responses to this treatment. The starting dose was 30 mgm(-2) (dose expressed as mg equivalent camptothecin). In total, 23 patients received 47 courses at six dose levels, with a maximum dose of 240 mgm(-2). Dose-limiting toxicities were myelosuppression, neutropaenic sepsis, and diarrhoea. One patient died after cycle 1 MAG-CPT at the maximum dose. The maximum tolerated dose and dose recommended for further clinical study was 200 mgm(-2). The half-lives of both MAG-CPT and released CPT were prolonged (46 days) and measurable levels of MAG-CPT were retrieved from plasma and urine 4 weeks after treatment. However, subsequent pharmacodynamic studies of this agent have led to its withdrawal from clinical development
A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin
Polymeric drug conjugates are a new and experimental class of drug delivery systems with pharmacokinetic promises. The antineoplastic drug camptothecin was linked to a water-soluble polymeric backbone (MAG-CPT) and administrated as a 30 min infusion over 3 consecutive days every 4 weeks to patients with malignant solid tumours. The objectives of our study were to determine the maximal tolerated dose, the dose-limiting toxicities, and the plasma and urine pharmacokinetics of MAG-CPT, and to document anti-tumour activity. The starting dose was 17 mg m−2 day−1. Sixteen patients received 39 courses at seven dose levels. Maximal tolerated dose was at 68 mg m−2 day−1 and dose-limiting toxicities consisted of cumulative bladder toxicity. MAG-CPT and free camptothecin were accumulated during days 1–3 and considerable amounts of MAG-CPT could still be retrieved in plasma and urine after 4–5 weeks. The half-lives of bound and free camptothecin were equal indicating that the kinetics of free camptothecin were release rate dependent. In summary, the pharmacokinetics of camptothecin were dramatically changed, showing controlled prolonged exposure of camptothecin. Haematological toxicity was relatively mild, but serious bladder toxicity was encountered which is typical for camptothecin and was found dose limiting
Can sacrificial feeding areas protect aquatic plants from herbivore grazing? Using behavioural ecology to inform wildlife management
Effective wildlife management is needed for conservation, economic and human well-being objectives. However, traditional population control methods are frequently ineffective, unpopular with stakeholders, may affect non-target species, and can be both expensive and impractical to implement. New methods which address these issues and offer effective wildlife management are required. We used an individual-based model to predict the efficacy of a sacrificial feeding area in preventing grazing damage by mute swans (Cygnus olor) to adjacent river vegetation of high conservation and economic value. The accuracy of model predictions was assessed by a comparison with observed field data, whilst prediction robustness was evaluated using a sensitivity analysis. We used repeated simulations to evaluate how the efficacy of the sacrificial feeding area was regulated by (i) food quantity, (ii) food quality, and (iii) the functional response of the forager. Our model gave accurate predictions of aquatic plant biomass, carrying capacity, swan mortality, swan foraging effort, and river use. Our model predicted that increased sacrificial feeding area food quantity and quality would prevent the depletion of aquatic plant biomass by swans. When the functional response for vegetation in the sacrificial feeding area was increased, the food quantity and quality in the sacrificial feeding area required to protect adjacent aquatic plants were reduced. Our study demonstrates how the insights of behavioural ecology can be used to inform wildlife management. The principles that underpin our model predictions are likely to be valid across a range of different resource-consumer interactions, emphasising the generality of our approach to the evaluation of strategies for resolving wildlife management problems
FHA-Mediated Cell-Substrate and Cell-Cell Adhesions Are Critical for Bordetella pertussis Biofilm Formation on Abiotic Surfaces and in the Mouse Nose and the Trachea
Bordetella spp. form biofilms in the mouse nasopharynx, thereby providing a potential mechanism for establishing chronic infections in humans and animals. Filamentous hemagglutinin (FHA) is a major virulence factor of B. pertussis, the causative agent of the highly transmissible and infectious disease, pertussis. In this study, we dissected the role of FHA in the distinct biofilm developmental stages of B. pertussis on abiotic substrates and in the respiratory tract by employing a murine model of respiratory biofilms. Our results show that the lack of FHA reduced attachment and decreased accumulation of biofilm biomass on artificial surfaces. FHA contributes to biofilm development by promoting the formation of microcolonies. Absence of FHA from B. pertussis or antibody-mediated blockade of surface-associated FHA impaired the attachment of bacteria to the biofilm community. Exogenous addition of FHA resulted in a dose-dependent inhibitory effect on bacterial association with the biofilms. Furthermore, we show that FHA is important for the structural integrity of biofilms formed on the mouse nose and trachea. Together, these results strongly support the hypothesis that FHA promotes the formation and maintenance of biofilms by mediating cell-substrate and inter-bacterial adhesions. These discoveries highlight FHA as a key factor in establishing structured biofilm communities in the respiratory tract
Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement
Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a “reward prediction error” (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function
Global gene expression patterns in the post-pneumonectomy lung of adult mice
<p>Abstract</p> <p>Background</p> <p>Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration.</p> <p>Methods</p> <p>Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology.</p> <p>Results</p> <p>The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis.</p> <p>Conclusion</p> <p>These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.</p
Utilizing Spatial Demographic and Life History Variation to Optimize Sustainable Yield of a Temperate Sex-Changing Fish
Fish populations vary geographically in demography and life history due to environmental and ecological processes and in response to exploitation. However, population dynamic models and stock assessments, used to manage fisheries, rarely explicitly incorporate spatial variation to inform management decisions. Here, we describe extensive geographic variation in several demographic and life history characteristics (e.g., size structure, growth, survivorship, maturation, and sex change) of California sheephead (Semicossyphus pulcher), a temperate rocky reef fish targeted by recreational and commercial fisheries. Fish were sampled from nine locations throughout southern California in 2007–2008. We developed a dynamic size and age-structured model, parameterized separately for each location, to assess the potential cost or benefit in terms of fisheries yield and conservation objectives of changing minimum size limits and/or fishing mortality rates (compared to the status quo). Results indicate that managing populations individually, with location-specific regulations, could increase yield by over 26% while maintaining conservative levels of spawning biomass. While this local management approach would be challenging to implement in practice, we found statistically similar increases in yield could be achieved by dividing southern California into two separate management regions, reflecting geographic similarities in demography. To maximize yield, size limits should be increased by 90 mm in the northern region and held at current levels in the south. We also found that managing the fishery as one single stock (the status quo), but with a size limit 50 mm greater than the current regulations, could increase overall fishery yield by 15%. Increases in size limits are predicted to enhance fishery yield and may also have important ecological consequences for the predatory role of sheephead in kelp forests. This framework for incorporating demographic variation into fisheries models can be exported generally to other species and may aid in identifying the appropriate spatial scales for fisheries management
- …