185 research outputs found
Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy
Neuroimaging studies in social neuroscience have largely relied on functional connectivity (FC) methods to characterize the functional integration between different brain regions. However, these methods have limited utility in social-cognitive studies that aim to understand the directed information flow among brain areas that underlies complex psychological processes. In this study we combined functional and effective connectivity approaches to characterize the functional integration within the Default Mode Network (DMN) and its role in self-perceived empathy. Forty-two participants underwent a resting state fMRI scan and completed a questionnaire of dyadic empathy. Independent Component Analysis (ICA) showed that higher empathy scores were associated with an increased contribution of the medial prefrontal cortex (mPFC) to the DMN spatial mode. Dynamic causal modelling (DCM) combined with Canonical Variance Analysis (CVA) revealed that this association was mediated indirectly by the posterior cingulate cortex (PCC) via the right inferior parietal lobule (IPL). More specifically, in participants with higher scores in empathy, the PCC had a greater effect on bilateral IPL and the right IPL had a greater influence on mPFC. These results highlight the importance of using analytic approaches that address directed and hierarchical connectivity within networks, when studying complex psychological phenomena, such as empathy.- This study was funded by BIAL Foundation (Grant number 87/12); by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Education and Science through national funds and co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007653); by the postdoctoral scholarship UMINHO/BPD/18/2017 and by the Portuguese Foundation for Science Doctoral scholarship (PD/BD/105963/2014). This work was conducted at Psychology Research Centre (UID/PSI/01662/2013), University of Minho
Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology
Association of 3 different antihypertensive medications with hip and pelvic fracture risk in older adults secondary analysis of a randomized clinical trial
IMPORTANCE On the basis of observational studies, the use of thiazide diuretics for the treatment of hypertension is associated with reduced fracture risk compared with nonuse. Data from randomized clinical trials are lacking. OBJECTIVE To examine whether the use of thiazide diuretics for the treatment of hypertension is associated with reduced fracture risk compared with nonuse. DESIGN, SETTING, AND PARTICIPANTS Using Veterans Affairs and Medicare claims data, this study examined hip and pelvic fracture hospitalizations in Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial participants randomized to first-step therapy with a thiazide-type diuretic (chlorthalidone), a calcium channel blocker (amlodipine besylate), or an angiotensin-converting enzyme inhibitor (lisinopril). Recruitment was from February 1994 to January 1998; in-trial follow-up ended in March 2002. The mean follow-up was 4.9 years. Posttrial follow-up was conducted through the end of 2006, using passive surveillance via national databases. For this secondary analysis, which used an intention-to-treat approach, data were analyzed from February 1, 1994, through December 31, 2006. MAIN OUTCOMES AND MEASURES Hip and pelvic fracture hospitalizations. RESULTS A total of 22 180 participants (mean [SD] age, 70.4 [6.7] years; 43.0%female; and 49.9%white non-Hispanic, 31.2%African American, and 19.1%other ethnic groups) were followed for up to 8 years (mean [SD], 4.9 [1.5] years) during masked therapy. After trial completion, 16 622 participants for whom claims data were available were followed for up to 5 additional years (mean [SD] total follow-up, 7.8 [3.1] years). During the trial, 338 fractures occurred. Participants randomized to receive chlorthalidone vs amlodipine or lisinopril had a lower risk of fracture on adjusted analyses (hazards ratio [HR], 0.79; 95%CI, 0.63-0.98; P = .04). Risk of fracture was significantly lower in participants randomized to receive chlorthalidone vs lisinopril (HR, 0.75; 95%CI, 0.58-0.98; P = .04) but not significantly different compared with those randomized to receive amlodipine (HR, 0.82; 95%CI, 0.63-1.08; P = .17). During the entire trial and posttrial period of follow-up, the cumulative incidence of fractures was nonsignificantly lower in participants randomized to receive chlorthalidone vs lisinopril or amlodipine (HR, 0.87; 95%CI, 0.74-1.03; P = .10) and vs each medication separately. In sensitivity analyses, when 1 year after randomization was used as the baseline (to allow for the effects of medications on bone to take effect), similar results were obtained for in-trial and in-trial plus posttrial follow-up. CONCLUSIONS AND RELEVANCE These findings from a large randomized clinical trial provide evidence of a beneficial effect of thiazide-type diuretic therapy in reducing hip and pelvic fracture risk compared with treatment with other antihypertensive medications
Sympatho-renal axis in chronic disease
Essential hypertension, insulin resistance, heart failure, congestion, diuretic resistance, and functional renal disease are all characterized by excessive central sympathetic drive. The contribution of the kidney’s somatic afferent nerves, as an underlying cause of elevated central sympathetic drive, and the consequences of excessive efferent sympathetic signals to the kidney itself, as well as other organs, identify the renal sympathetic nerves as a uniquely logical therapeutic target for diseases linked by excessive central sympathetic drive. Clinical studies of renal denervation in patients with resistant hypertension using an endovascular radiofrequency ablation methodology have exposed the sympathetic link between these conditions. Renal denervation could be expected to simultaneously affect blood pressure, insulin resistance, sleep disorders, congestion in heart failure, cardiorenal syndrome and diuretic resistance. The striking epidemiologic evidence for coexistence of these disorders suggests common causal pathways. Chronic activation of the sympathetic nervous system has been associated with components of the metabolic syndrome, such as blood pressure elevation, obesity, dyslipidemia, and impaired fasting glucose with hyperinsulinemia. Over 50% of patients with essential hypertension are hyperinsulinemic, regardless of whether they are untreated or in a stable program of treatment. Insulin resistance is related to sympathetic drive via a bidirectional mechanism. In this manuscript, we review the data that suggests that selective impairment of renal somatic afferent and sympathetic efferent nerves in patients with resistant hypertension both reduces markers of central sympathetic drive and favorably impacts diseases linked through central sympathetics—insulin resistance, heart failure, congestion, diuretic resistance, and cardiorenal disorders
Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation
Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci.
Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard.
Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host
Specifically Progressive Deficits of Brain Functional Marker in Amnestic Type Mild Cognitive Impairment
Background: Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD.
Methodology/Principal Findings: Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the impairments of episodic memory from baseline to follow up in aMCI group.
Conclusions/Significance: The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the development of aMCI
Multifractal and entropy analysis of resting-state electroencephalography reveals spatial organization in local dynamic functional connectivity
Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research
Assessment of thrombin-activatable fibrinolysis inhibitor (TAFI) activation in acquired hemostatic dysfunction: a diagnostic challenge
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
- …
