23 research outputs found

    Predicting violent infractions in a Swiss state penitentiary: A replication study of the PCL-R in a population of sex and violent offenders

    Get PDF
    BACKGROUND: Research conducted with forensic psychiatric patients found moderate correlations between violence in institutions and psychopathy. It is unclear though, whether the PCL-R is an accurate instrument for predicting aggressive behavior in prisons. Results seem to indicate that the instrument is better suited for predicting verbal rather than physical aggression of prison inmates. METHODS: PCL-R scores were assessed for a sample of 113 imprisoned sex and violent offenders in Switzerland. Logistic regression analyses were used to estimate physical and verbal aggression as a function of the PCL-R sum score. Additionally, stratified analyses were conducted for Factor 1 and 2. Infractions were analyzed as to their motives and consequences. RESULTS: The mean score of the PCL-R was 12 points. Neither the relationship between physical aggression and the sum score of the PCL-R, nor the relationship between physical aggression and either of the two factors of the PCL-R were significant. Both the sum score and Factor 1 predicted the occurrence of verbal aggression (AUC=0.70 and 0.69), while Factor 2 did not. CONCLUSION: Possible explanations are discussed for the weak relationship between PCL-R scores and physically aggressive behavior during imprisonment. Some authors have discussed whether the low base rate of violent infractions can be considered an explanation for the non-significant relation between PCL-R-score and violence. The base rate in this study, however, with 27%, was not low. It is proposed that the distinction between reactive and instrumental motives of institutional violence must be considered when examining the usefulness of the PCL-R in predicting in-prison physical aggressive behavior

    Effects of long-term exposure to an electronic containment system on the behaviour and welfare of domestic cats

    Get PDF
    Free-roaming cats are exposed to a variety of risks, including involvement in road traffic accidents. One way of mitigating these risks is to contain cats, for example using an electronic boundary fence system that delivers an electric ‘correction’ via a collar if a cat ignores a warning cue and attempts to cross the boundary. However, concerns have been expressed over the welfare impact of such systems. Our aim was to determine if long-term exposure to an electronic containment system was associated with reduced cat welfare. We compared 46 owned domestic cats: 23 cats that had been contained by an electronic containment system for more than 12 months (AF group); and 23 cats with no containment system that were able to roam more widely (C group). We assessed the cats’ behavioural responses and welfare via four behavioural tests (unfamiliar person test; novel object test; sudden noise test; cognitive bias test) and an owner questionnaire. In the unfamiliar person test, C group lip-licked more than the AF group, whilst the AF group looked at, explored and interacted more with the unfamiliar person than C group. In the novel object test, the AF group looked at and explored the object more than C group. No significant differences were found between AF and C groups for the sudden noise or cognitive bias tests. Regarding the questionnaire, C group owners thought their cats showed more irritable behaviour and AF owners thought that their cats toileted inappropriately more often than C owners. Overall, AF cats were less neophobic than C cats and there was no evidence of significant differences between the populations in general affective state. These findings indicate that an electronic boundary fence with clear pre-warning cues does not impair the long term quality of life of cat

    Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    Get PDF
    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation
    corecore