23 research outputs found

    DNaseI Hypersensitivity and Ultraconservation Reveal Novel, Interdependent Long-Range Enhancers at the Complex Pax6 Cis-Regulatory Region

    Get PDF
    The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6(Sey/Sey) mice

    Effects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis

    Get PDF
    Background: Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6(+/-) heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6(+/-)) mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/-) transgenics, which over-express Pax6 and model human PAX6 duplication. Methodology/Principal Findings: We used electron microscopy to investigate ocular defects in Pax6(+/-) heterozygotes (low Pax6 levels) and PAX77(Tg/-) transgenics (high Pax6 levels). As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/-)) mice to investigate corneal epithelial maintenance by LESC clones in Pax6(+/-) and PAX77(Tg/-) mosaic mice. PAX77(Tg/-) mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects), suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6(+/-) mosaics were corrected by introducing the PAX77 transgene (in Pax6(+/-), PAX77(Tg/-) mosaics). Pax6(Leca4/+), XLacZ(Tg/-) mosaic mice (heterozygous for the Pax6(Leca4) missense mutation) showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers) declined with age (between 15 and 30 weeks) in wild-type XLacZ(Tg/-) mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6(+/-) and PAX77(Tg/-) mosaic corneas, suggesting Pax6 under-and over-expression both affect LESC clones. Conclusions/Significance: Pax6(+/-) and PAX77(Tg/-) genotypes have only relatively minor effects on LESC clone numbers but cause more severe corneal endothelial and stromal defects. This should prompt further investigations of the pathophysiology underlying human aniridia and ARK

    Analysis of compound heterozygotes reveals that the mouse floxed Pax6 tm1Ued allele produces abnormal eye phenotypes

    Get PDF
    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6(tm1Ued) (Pax6(fl)) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6(fl/fl) and heterozygous Pax6(fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6(fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6(Sey-Neu) (Pax6(−)) null allele. Pax6(fl/−) compound heterozygotes had more severe eye abnormalities than Pax6(+/−) heterozygotes, implying that Pax6(fl) differs from the wild-type Pax6(+) allele. Immunohistochemistry showed that the Pax6(fl/−) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6(fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11248-016-9962-4) contains supplementary material, which is available to authorized users

    Increased Corneal Epithelial Turnover Contributes to Abnormal Homeostasis in the Pax6(+/-) Mouse Model of Aniridia

    Get PDF
    We aimed to test previous predictions that limbal epithelial stem cells (LESCs) are quantitatively deficient or qualitatively defective in Pax6(+/-) mice and decline with age in wild-type (WT) mice. Consistent with previous studies, corneal epithelial stripe patterns coarsened with age in WT mosaics. Mosaic patterns were also coarser in Pax6(+/-) mosaics than WT at 15 weeks but not at 3 weeks, which excludes a developmental explanation and strengthens the prediction that Pax6(+/-) mice have a LESC-deficiency. To investigate how Pax6 genotype and age affected corneal homeostasis, we compared corneal epithelial cell turnover and label-retaining cells (LRCs; putative LESCs) in Pax6(+/-) and WT mice at 15 and 30 weeks. Limbal BrdU-LRC numbers were not reduced in the older WT mice, so this analysis failed to support the predicted age-related decline in slow-cycling LESC numbers in WT corneas. Similarly, limbal BrdU-LRC numbers were not reduced in Pax6(+/-) heterozygotes but BrdU-LRCs were also present in Pax6(+/-) corneas. It seems likely that Pax6(+/-) LRCs are not exclusively stem cells and some may be terminally differentiated CD31-positive blood vessel cells, which invade the Pax6(+/-) cornea. It was not, therefore, possible to use this approach to test the prediction that Pax6(+/-) corneas had fewer LESCs than WT. However, short-term BrdU labelling showed that basal to suprabasal movement (leading to cell loss) occurred more rapidly in Pax6(+/-) than WT mice. This implies that epithelial cell loss is higher in Pax6(+/-) mice. If increased corneal epithelial cell loss exceeds the cell production capacity it could cause corneal homeostasis to become unstable, resulting in progressive corneal deterioration. Although it remains unclear whether Pax6(+/-) mice have LESC-deficiency, we suggest that features of corneal deterioration, that are often taken as evidence of LESC-deficiency, might occur in the absence of stem cell deficiency if corneal homeostasis is destabilised by excessive cell loss

    Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene.

    No full text
    Waardenburg's syndrome (WS) is an autosomal dominant combination of deafness and pigmentary disturbances, probably caused by defective function of the embryonic neural crest. We have mapped one gene for WS to the distal part of chromosome 2. On the basis of their homologous chromosomal location, their close linkage to an alkaline phosphatase gene, and their related phenotype, we suggested that WS and the mouse mutant Splotch might be homologous. Splotch is caused by mutation in the mouse Pax-3 gene. This gene is one of a family of eight Pax genes known in mice which are involved in regulating embryonic development; each contains a highly conserved transcription control sequence, the paired box. Here we show that some families with WS have mutations in the human homologue of Pax-3. Mutations in a related gene, Pax-6, which, like Pax-3, has both a paired box and a paired-type homeobox sequence, cause the Small-eye mutation in mice and aniridia in man. Thus mutations in the Pax genes are important causes of human developmental defects
    corecore