138 research outputs found

    Evaluation of fluoride release from experimental TiF4 and NaF varnishes in vitro

    Full text link
    Fluoride varnishes play an important role in the prevention of dental caries, promoting the inhibition of demineralization and the increase of remineralization. OBJECTIVE: This study aimed to analyze the amount of fluoride released into water and artificial saliva from experimental TiF(4 )and NaF varnishes, with different concentrations, for 12 h. MATERIAL AND METHODS: Fluoride varnishes were applied on acrylic blocks and then immersed in 10 ml of deionized water and artificial saliva in polystyrene bottles. The acrylic blocks were divided in seven groups (n=10): 1.55% TiF(4 )varnish (0.95% F, pH 1.0); 3.10% TiF(4 )varnish (1.90% F, pH 1.0); 3.10% and 4% TiF(4 )varnish (2.45% F, pH 1.0); 2.10% NaF varnish (0.95% F, pH 5.0); 4.20% NaF varnish (1.90% F, pH 5.0); 5.42% NaF varnish (2.45% F, pH 5.0) and control (no treatment, n=5). The fluoride release was analyzed after 1/2, 1, 3, 6, 9 and 12 h of exposure. The analysis was performed using an ion-specific electrode coupled to a potentiometer. Two-way ANOVA and Bonferroni's test were applied for the statistical analysis (p<0.05). RESULTS: TiF(4 )varnishes released larger amounts of fluoride than NaF varnishes during the first 1/2 h, regardless of their concentration; 4% TiF(4) varnish released more fluoride than NaF varnishes for the first 6 h. The peak of fluoride release occurred at 3 h. There was a better dose-response relationship among the varnishes exposed to water than to artificial saliva. CONCLUSIONS: The 3.10% and 4% TiF(4 )-based varnishes have greater ability to release fluoride into water and artificial saliva compared to NaF varnish; however, more studies must be conducted to elucidate the mechanism of action of TiF(4 )varnish on tooth surface

    Influence of the apical enlargement size on the endotoxin level reduction of dental root canals

    Get PDF
    Gram-negative bacteria play an essential role in endodontic infections because they have virulence factors such as endotoxin. Due to its potential cytotoxic activity, special attention has been given to the removal/neutralization of this endotoxin in the root canal system. OBJECTIVE: The aim of this study was to evaluate the influence of the apical enlargement size (AES) by using rotary instruments on the endotoxin level reduction of dental root canals. MATERIAL AND METHODS: Forty root canals of the mandibular premolar teeth were used. Escherichia coli endotoxin (055: B55) was inoculated into thirty root canals. Ten teeth served as the negative control group. After the incubation period, the first endotoxin samples were collected from the root canals with a sterile/apyrogenic paper point for the analysis of the endotoxin units (EU/mL) present before instrumentation (S1). Specimen instrumentation was performed with the Mtwo(®) rotary system in the sequence 10/.04, 15/.05, 20/.06, 25/.06, 30/.05, 35/.04 and 40/.04. To monitor the effectiveness of increasing apical enlargement on endotoxin removal, the second endotoxin samples were collected from all the root canals after instrumentation with the following instruments: #25/.06- (S2); #30/.05- (S3); # 35/.04- (S4); and #40/.04- (S5). Limulus amebocyte lysate (LAL) was used to quantify the levels of endotoxin. The results were statistically compared by using repeated measures of ANOVA with post hoc Tukey testing. RESULTS: Increasing levels of endotoxin removal was achieved by large sized apical enlargement: S2 (AES #25/.06)- 89.2%, S3 (AES #30/.05)- 95.9%, S4 (AES #35/.04)- 97.8% and S5 (AES #40/.04)- 98.2%. Substantial reduction of endotoxin content was obtained in S4 and S5 compared to S2 (p<0.05), however, the root canal preparation was not able to eliminate the endotoxin. CONCLUSIONS: Under the conditions of this study, it was concluded that the reduction of endotoxin levels of the dental root canals could be predicted by increasing the apical enlargement size

    Photosynthesis-dependent Hâ‚‚Oâ‚‚ transfer from chloroplasts to nuclei provides a high-light signalling mechanism

    Get PDF
    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression

    Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil

    Get PDF
    The dengue virus has a single-stranded positive-sense RNA genome of ∼10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1–4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in São José do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000–2001. Sixty DENV-3 from São José do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R0 = 1.53 and values for lineage 2 of R0 = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area
    • …
    corecore