2,661 research outputs found

    Absorbate-Induced Piezochromism in a Porous Molecular Crystal

    Get PDF
    Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluene is also found to crystallize within the pore. Furthermore, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media

    Machine Learning to Identify Genetic Salt-Losing Tubulopathies in Hypokalemic Patients

    Get PDF
    Introduction: Clinically distinguishing patients with the inherited salt-losing tubulopathies (SLTs), Gitelman or Bartter syndrome (GS or BS) from other causes of hypokalemia (LK) patients is difficult, and genotyping is costly. We decided to identify clinical characteristics that differentiate SLTs from LK. Methods: A total of 66 hypokalemic patients with possible SLTs were recruited to a prospective observational cohort study at the University College London Renal Tubular Clinic, London. All patients were genotyped for pathogenic variants in genes which cause SLTs; 39 patients had pathogenic variants in genes causing SLTs. We obtained similar data sets from cohorts in Taipei and Kobe, as follows: the combined data set comprised 419 patients; 291 had genetically confirmed SLT. London and Taipei data sets were combined to train machine learning (ML) algorithms, which were then tested on the Kobe data set. Results: Single biochemical variables (e.g., plasma renin) were significantly, but inconsistently, different between SLTs and LK in all cohorts. A decision table algorithm using serum bicarbonate and urinary sodium excretion (FENa) achieved a classification accuracy of 74%. This was superior to all the single biochemical variables identified previously. Conclusion: ML algorithms can differentiate true SLT in the context of a specialist clinic with some accuracy. However, based on routine biochemistry, the accuracy is insufficient to make genotyping redundant

    Systolic anterior motion of the anterior mitral valve leaflet begins in subclinical hypertrophic cardiomyopathy

    Get PDF
    AIMS: Anterior mitral valve leaflet (AMVL) elongation is detectable in overt and subclinical hypertrophic cardiomyopathy (HCM). We sought to investigate the dynamic motion of the aorto-mitral apparatus to understand the behaviour of the AMVL, and mechanisms of left ventricular outflow tract obstruction (LVOTO) predisposition in HCM. METHODS & RESULTS: Cardiovascular magnetic resonance imaging (CMR) using 1.5 Tesla scanner was performed on 36 HCM sarcomere gene mutation carriers without left ventricular hypertrophy (G + LVH-), 31 HCM patients with preserved ejection fraction carrying a pathogenic sarcomere gene mutation (G + LVH+), and 53 age, sex and BSA-matched healthy volunteers.Dynamic excursion of the aorto-mitral apparatus was assessed semi-automatically on breath-held 3-chamber cine steady-state free precession images. Four pre-defined regions of interest (ROI) were tracked: ROIPMVL: hinge point of the posterior MVL; ROITRIG: intertrigonal mitral annulus; ROIAMVL: AMVL tip; ROIAAO: anterior aortic annulus. Compared to controls, normalized two-dimensional displacement-versus-time plots in G + LVH- revealed subtle but significant systolic anterior motion (SAM) of the AMVL (P < 0.0001) and reduced longitudinal excursion of ROIAAO (P = 0.014) and ROIPMVL (P = 0.048). In overt and subclinical HCM, excursion of the ROITRIG/AMVL/PMVL was positively associated with burden of LV fibrosis (p < 0.028). As expected, SAM was observed in G + LVH + together with reduced longitudinal excursion of ROITRIG (P = 0.049) and ROIAAO (P = 0.008). CONCLUSION: Dyskinesia of the aorto-mitral apparatus, including SAM of the elongated AMVL, is detectable in subclinical HCM, before the development of LVH or LA enlargement. These data have the potential to improve our understanding of early phenotype development and LVOTO-predisposition in HCM

    An extragalactic supernebula confined by gravity

    Full text link
    Little is known about the origins of the giant star clusters known as globular clusters. How can hundreds of thousands of stars form simultaneously in a volume only a few light years across the distance of the sun to its nearest neighbor? Radiation pressure and winds from luminous young stars should disperse the star-forming gas and disrupt the formation of the cluster. Globular clusters in our Galaxy cannot provide answers; they are billions of years old. Here we report the measurement of infrared hydrogen recombination lines from a young, forming super star cluster in the dwarf galaxy, NGC 5253. The lines arise in gas heated by a cluster of an estimated million stars, so young that it is still enshrouded in gas and dust, hidden from optical view. We verify that the cluster contains 4000-6000 massive, hot "O" stars. Our discovery that the gases within the cluster are bound by gravity may explain why these windy and luminous O stars have not yet blown away the gases to allow the cluster to emerge from its birth cocoon. Young clusters in "starbursting" galaxies in the local and distant universe may be similarly gravitationally confined and cloaked from view.Comment: Letter to Natur

    VLASSICK: The VLA Sky Survey in the Central Kiloparsec

    Get PDF
    At a distance of 8 kpc, the center of our Galaxy is the nearest galactic nucleus, and has been the subject of numerous key projects undertaken by great observatories such as Chandra, Spitzer, and Herschel. However, there are still no surveys of molecular gas properties in the Galactic center with less than 30" (1 pc) resolution. There is also no sensitive polarization survey of this region, despite numerous nonthermal magnetic features apparently unique to the central 300 parsecs. In this paper, we outline the potential the VLASS has to fill this gap. We assess multiple considerations in observing the Galactic center, and recommend a C-band survey with 10 micro-Jy continuum RMS and sensitive to molecular gas with densities greater than 10^4 cm^{-3}, covering 17 square degrees in both DnC and CnB configurations ( resolution ~5"), totaling 750 hours of observing time. Ultimately, we wish to note that the upgraded VLA is not just optimized for fast continuum surveys, but has a powerful correlator capable of simultaneously observing continuum emission and dozens of molecular and recombination lines. This is an enormous strength that should be fully exploited and highlighted by the VLASS, and which is ideally suited for surveying the center of our Galaxy

    Colon cancer associated genes exhibit signatures of positive selection at functionally significant positions

    Get PDF
    Background Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of these model organisms, mice are often dominant. However, our assumptions of functional equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years (MY) of independent evolution between these species. For a given set of human disease related genes, it is therefore important to determine if functional equivalency has been retained between species. In this study we test the hypothesis that cancer associated genes have different patterns of substitution akin to adaptive evolution in different mammal lineages. Results Our analysis of the current literature and colon cancer databases identified 22 genes exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous datasets revealed significant levels of positive selection. Evidence of lineage-specific positive selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1. Conclusion Identifying positive selection in the Primate, Hominidae, Muridae and Murinae lineages suggests an ancestral functional shift in these genes between the rodent and primate lineages. Analyses such as this, combining evolutionary theory and predictions - along with medically relevant data, can thus provide us with important clues for modeling human diseases

    Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease.

    Get PDF
    Mycobacterium ulcerans infection causes a neglected tropical disease known as Buruli ulcer that is now found in poor rural areas of West Africa in numbers that sometimes exceed those reported for another significant mycobacterial disease, leprosy, caused by M. leprae. Unique among mycobacterial diseases, M. ulcerans produces a plasmid-encoded toxin called mycolactone (ML), which is the principal virulence factor and destroys fat cells in subcutaneous tissue. Disease is typically first manifested by the appearance of a nodule that eventually ulcerates and the lesions may continue to spread over limbs or occasionally the trunk. The current standard treatment is 8 weeks of daily rifampin and injections of streptomycin (RS). The treatment kills bacilli and wounds gradually heal. Whether RS treatment actually stops mycolactone production before killing bacilli has been suggested by histopathological analyses of patient lesions. Using a mouse footpad model of M. ulcerans infection where the time of infection and development of lesions can be followed in a controlled manner before and after antibiotic treatment, we have evaluated the progress of infection by assessing bacterial numbers, mycolactone production, the immune response, and lesion histopathology at regular intervals after infection and after antibiotic therapy. We found that RS treatment rapidly reduced gross lesions, bacterial numbers, and ML production as assessed by cytotoxicity assays and mass spectrometric analysis. Histopathological analysis revealed that RS treatment maintained the association of the bacilli with (or within) host cells where they were destroyed whereas lack of treatment resulted in extracellular infection, destruction of host cells, and ultimately lesion ulceration. We propose that RS treatment promotes healing in the host by blocking mycolactone production, which favors the survival of host cells, and by killing M. ulcerans bacilli

    Effects of Aβ exposure on longterm associative memory and its neuronal mechanisms in a defined neuronal network

    Get PDF
    Amyloid beta (Aβ ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer’s disease (AD). Although Aβ -induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ -induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment
    • …
    corecore