24 research outputs found

    Analysis of circulating microRNAs in patients with repaired Tetralogy of Fallot with and without heart failure

    No full text
    Abstract Background MicroRNAs (miRNAs) are a class of regulatory RNAs that regulate gene expression post-transcriptionally. Little, however, is known on the expression profile of circulating miRNAs in Tetralogy of Fallot (TOF) patients late after surgical repair. In this study, we aimed to identify the specific patterns of circulating miRNAs in blood of patients with repaired, non-syndromic TOF and to assess whether these specific miRNAs may be useful to differentiate patients with and without heart failure. Methods SurePrint™ 8 × 60 K Human v16 miRNA arrays were used to determine miRNA expression profiles in 15 healthy controls and 37 patients after TOF repair of whom 3 had symptomatic right heart failure. The expression levels of selected miRNAs have been validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Enrichment analyses of altered miRNA expression were predicted using bioinformatic tools. Results Compared with healthy controls, a total of 49, 58 and 77 miRNAs were found to be significantly altered in TOF patients (TOF-all), TOF patients with (TOF-HF) and without symptomatic right heart failure (TOF-noHF) (>2.0-fold change, adjusted P < 0.05), respectively. Three miRNAs namely miR-181d-5p, miR-206 and miR-625-5p were validated by RT-qPCR in all TOF groups. The area under the receiver operating characteristic curve (AUC) for miR-181d-5p, miR-206 and miR-625-5p were 0.987, 0.993 and 0.769 in TOF-all and 0.990, 0.994 and 0.749 in TOF-noHF, respectively. Moreover, expression levels of miR-625-5p, miR-1233-3p and miR-421 were lower in TOF-HF compared to TOF-noHF (P = 0.012). Conclusions Altered expression levels of circulating miRNAs were found in TOF patients late after surgical repair and are different to those seen in the right ventricular myocardium of infants with TOF. Expression levels of miR-421, miR-1233-3p and miR-625-5p are lower in TOF patients with symptomatic right heart failure and thus may indicate disease progression in these patients

    The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage

    No full text
    Apaf1 is a key regulator of the mitochondrial intrinsic pathway of apoptosis, as it activates executioner caspases by forming the apoptotic machinery apoptosome. Its genetic regulation and its post-translational modification are crucial under the various conditions where apoptosis occurs. Here we describe Ku70/86, a mediator of non-homologous end-joining pathway of DNA repair, as a novel regulator of Apaf1 transcription. Through analysing different Apaf1 promoter mutants, we identified an element repressing the Apaf1 promoter. We demonstrated that Ku70/86 is a nuclear factor able to bind this repressing element and downregulating Apaf1 transcription. We also found that Ku70/86 interaction with Apaf1 promoter is dynamically modulated upon DNA damage. The effect of this binding is a downregulation of Apaf1 expression immediately following the damage to DNA; conversely, we observed Apaf1 upregulation and apoptosis activation when Ku70/86 unleashes the Apaf1-repressing element. Therefore, besides regulating DNA repair, our results suggest that Ku70/86 binds to the Apaf1 promoter and represses its activity. This may help to inhibit the apoptosome pathway of cell death and contribute to regulate cell survival
    corecore