52 research outputs found

    Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins

    Get PDF
    Tetanus and botulinum neurotoxins type B and G are zinc-endopeptidases of remarkable specificity. They recognize and cleave a synaptic vesicle- associated membrane protein (VAMP)/synaptobrevin, an essential protein component of the vesicle docking and fusion apparatus. VAMP contains two copies of a nine-residue motif, also present in SNAP-25 (synaptosomal- associated protein of 25 kDa) and syntaxin, the two other substrates of clostridial neurotoxins. This motif was suggested to be a determinant of the target specificity of neurotoxins. Antibodies raised against this motif cross-react among VAMP, SNAP-25, and syntaxin and inhibit the proteolytic activity of the neurotoxins. Moreover, the various neurotoxins cross-inhibit each other's proteolytic action. The role of the three negatively charged residues of the motif in neurotoxin recognition was probed by site-directed mutagenesis. Substitution of acidic residues in both copies of the VAMP motif indicate that the first one is involved in tetanus neurotoxin recognition, whereas the second one is implicated in binding botulinum B and G neurotoxins. These results suggest that the two copies of the motif have a tandem association in the VAMP molecule

    KSHV PAN RNA Associates with Demethylases UTX and JMJD3 to Activate Lytic Replication through a Physical Interaction with the Virus Genome

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphomas. KSHV lytic infection produces PAN RNA, a highly abundant noncoding polyadenylated transcript that is retained in the nucleus. We recently demonstrated that PAN RNA interacts with several viral and cellular factors and can disregulate the expression of genes that modulate immune response. In an effort to define the role of PAN RNA in the context of the virus genome we generated a recombinant BACmid that deleted the PAN RNA locus. Because of the apparent duplication of the PAN RNA locus in BAC36, we generated BAC36CR, a recombinant BACmid that removes the duplicated region. BAC36CR was used as a template to delete most of the PAN RNA locus to generate BAC36CRΔPAN. BAC36CRΔPAN failed to produce supernatant virus and displayed a general decrease in mRNA accumulation of representative immediate early, early and late genes. Most strikingly, K-Rta expression was decreased in lytically induced BAC36CRΔPAN-containing cell lines at early and late time points post induction. Expression of PAN RNA in trans in BAC36CRΔPAN containing cells resulted in an increase in K-Rta expression, however K-Rta over expression failed to rescue BAC36CRΔPAN, suggesting that PAN RNA plays a wider role in virus replication. To investigate the role of PAN RNA in the activation of K-Rta expression, we demonstrate that PAN RNA physically interacts with the ORF50 promoter. RNA chromatin immunoprecipitation assays show that PAN RNA interacts with demethylases JMJD3 and UTX, and the histone methyltransferase MLL2. Consistent with the interaction with demethylases, expression of PAN RNA results in a decrease of the repressive H3K27me3 mark at the ORF50 promoter. These data support a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome

    Abortive Lytic Reactivation of KSHV in CBF1/CSL Deficient Human B Cell Lines

    Get PDF
    Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade

    NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target.

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons

    No full text
    Tetanus and botulinum neurotoxins are di-chain proteins that cause paralysis by inhibiting neuroexocytosis. These neurotoxins enter into nerve terminals via endocytosis inside synaptic vesicles, whose acidic pH induces a structural change of the neurotoxin molecule that becomes capable of translocating its L chain into the cytosol, via a transmembrane protein-conducting channel made by the H chain. This is the least understood step of the intoxication process primarily because it takes place inside vesicles within the cytosol. In the present study, we describe how this passage was made accessible to investigation by making it to occur at the surface of neurons. The neurotoxin, bound to the plasma membrane in the cold, was exposed to a warm low pH extracellular medium and the entry of the L chain was monitored by measuring its specific metalloprotease activity with a ratiometric method. We found that the neurotoxin has to be bound to the membrane via at least two anchorage sites in order for a productive low-pH induced structural change to take place. In addition, this process can only occur if the single inter-chain disulfide bond is intact. The pH dependence of the conformational change of tetanus neurotoxin and botulinum neurotoxin B, C and D is similar and take places in the same slightly acidic range, which comprises that present inside synaptic vesicles. Based on these and previous findings, we propose a stepwise sequence of molecular events that lead from toxin binding to membrane insertion

    Structural determinants of the specificity for VAMP/synaptobrevin of tetanus and botulinum type B and G neurotoxins

    No full text

    Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins.

    Get PDF
    Tetanus and botulinum neurotoxins type B and G are zinc-endopeptidases of remarkable specificity. They recognize and cleave a synaptic vesicle- associated membrane protein (VAMP)/synaptobrevin, an essential protein component of the vesicle docking and fusion apparatus. VAMP contains two copies of a nine-residue motif, also present in SNAP-25 (synaptosomal- associated protein of 25 kDa) and syntaxin, the two other substrates of clostridial neurotoxins. This motif was suggested to be a determinant of the target specificity of neurotoxins. Antibodies raised against this motif cross-react among VAMP, SNAP-25, and syntaxin and inhibit the proteolytic activity of the neurotoxins. Moreover, the various neurotoxins cross-inhibit each other's proteolytic action. The role of the three negatively charged residues of the motif in neurotoxin recognition was probed by site-directed mutagenesis. Substitution of acidic residues in both copies of the VAMP motif indicate that the first one is involved in tetanus neurotoxin recognition, whereas the second one is implicated in binding botulinum B and G neurotoxins. These results suggest that the two copies of the motif have a tandem association in the VAMP molecule
    corecore