81 research outputs found

    Extreme Evolutionary Disparities Seen in Positive Selection across Seven Complex Diseases

    Get PDF
    Positive selection is known to occur when the environment that an organism inhabits is suddenly altered, as is the case across recent human history. Genome-wide association studies (GWASs) have successfully illuminated disease-associated variation. However, whether human evolution is heading towards or away from disease susceptibility in general remains an open question. The genetic-basis of common complex disease may partially be caused by positive selection events, which simultaneously increased fitness and susceptibility to disease. We analyze seven diseases studied by the Wellcome Trust Case Control Consortium to compare evidence for selection at every locus associated with disease. We take a large set of the most strongly associated SNPs in each GWA study in order to capture more hidden associations at the cost of introducing false positives into our analysis. We then search for signs of positive selection in this inclusive set of SNPs. There are striking differences between the seven studied diseases. We find alleles increasing susceptibility to Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), and Crohn's Disease (CD) underwent recent positive selection. There is more selection in alleles increasing, rather than decreasing, susceptibility to T1D. In the 80 SNPs most associated with T1D (p-value <7.01×10−5) showing strong signs of positive selection, 58 alleles associated with disease susceptibility show signs of positive selection, while only 22 associated with disease protection show signs of positive selection. Alleles increasing susceptibility to RA are under selection as well. In contrast, selection in SNPs associated with CD favors protective alleles. These results inform the current understanding of disease etiology, shed light on potential benefits associated with the genetic-basis of disease, and aid in the efforts to identify causal genetic factors underlying complex disease

    Diarrhea, Pneumonia, and Infectious Disease Mortality in Children Aged 5 to 14 Years in India

    Get PDF
    Background: Little is known about the causes of death in children in India after age five years. The objective of this study is to provide the first ever direct national and sub-national estimates of infectious disease mortality in Indian children aged 5 to 14 years. Methods: A verbal autopsy based assessment of 3 855 deaths is children aged 5 to 14 years from a nationally representative survey of deaths occurring in 2001–03 in 1?1 million homes in India. Results: Infectious diseases accounted for 58 % of all deaths among children aged 5 to 14 years. About 18 % of deaths were due to diarrheal diseases, 10 % due to pneumonia, 8 % due to central nervous system infections, 4 % due to measles, and 12 % due to other infectious diseases. Nationally, in 2005 about 59 000 and 34 000 children aged 5 to 14 years died from diarrheal diseases and pneumonia, corresponding to mortality of 24?1 and 13?9 per 100 000 respectively. Mortality was nearly 50 % higher in girls than in boys for both diarrheal diseases and pneumonia. Conclusions: Approximately 60 % of all deaths in this age group are due to infectious diseases and nearly half of these deaths are due to diarrheal diseases and pneumonia. Mortality in this age group from infectious diseases, and diarrhea i

    Validity of Verbal Autopsy Procedures for Determining Malaria Deaths in Different Epidemiological Settings in Uganda

    Get PDF
    BACKGROUND: Verbal autopsy (VA) procedures can be used to estimate cause of death in settings with inadequate vital registries. However, the sensitivity of VA for determining malaria-specific mortality may be low, and may vary with transmission intensity. We assessed the diagnostic accuracy of VA procedures as compared to hospital medical records for determining cause of death in children under five in three different malaria transmission settings in Uganda, including Tororo (high), Kampala (medium), and Kisoro (low). METHODS AND FINDINGS: Caretakers of children who died in participating hospitals were interviewed using a standardized World Health Organization questionnaire. Medical records from the child's hospitalization were also reviewed. Causes of death based on the VA questionnaires and the medical records were assigned independently by physician reviewers and then compared. A total of 719 cases were included in the final analysis, 67 in Tororo, 600 in Kampala, and 52 in Kisoro. Malaria was classified as the underlying or contributory cause of death by review of medical records in 33 deaths in Tororo, 60 in Kampala, and 0 in Kisoro. The sensitivity of VA procedures for determining malaria deaths in Tororo was 61% (95% CI 44-78%) and 50% in Kampala (95% CI 37-63%). Specificity for determining malaria deaths in Tororo and Kampala was high (>88%), but positive predictive value varied widely, from 83% in Tororo to 34% in Kampala (difference 49%, 95% CI 31-67, p<0.001). The difference between the cause-specific mortality fraction for malaria as determined by VA procedures and medical records was -11% in Tororo, +5% in Kampala, and +14% in Kisoro. CONCLUSIONS: Our results suggest that these VA methods have an acceptable level of diagnostic accuracy for determining malaria deaths at the population level in high and medium transmission areas, but not in low transmission areas

    Challenges in measuring measles case fatality ratios in settings without vital registration

    Get PDF
    Measles, a highly infectious vaccine-preventable viral disease, is potentially fatal. Historically, measles case-fatality ratios (CFRs) have been reported to vary from 0.1% in the developed world to as high as 30% in emergency settings. Estimates of the global burden of mortality from measles, critical to prioritizing measles vaccination among other health interventions, are highly sensitive to the CFR estimates used in modeling; however, due to the lack of reliable, up-to-date data, considerable debate exists as to what CFR estimates are appropriate to use. To determine current measles CFRs in high-burden settings without vital registration we have conducted six retrospective measles mortality studies in such settings. This paper examines the methodological challenges of this work and our solutions to these challenges, including the integration of lessons from retrospective all-cause mortality studies into CFR studies, approaches to laboratory confirmation of outbreaks, and means of obtaining a representative sample of case-patients. Our experiences are relevant to those conducting retrospective CFR studies for measles or other diseases, and to those interested in all-cause mortality studies

    Verbal Autopsy: Reliability and Validity Estimates for Causes of Death in the Golestan Cohort Study in Iran

    Get PDF
    BACKGROUND: Verbal autopsy (VA) is one method to obtain valid estimates of causes of death in the absence of valid medical records. We tested the reliability and validity of a VA questionnaire developed for a cohort study in Golestan Province in northeastern Iran. METHOD: A modified version of the WHO adult verbal autopsy was used to assess the cause of death in the first 219 Golestan Cohort Study (GCS) subjects who died. The GCS cause of death was determined by two internists who independently reviewed all available medical records. Two other internists ("reviewers") independently reviewed only the VA answers and classified the cause of death into one of nine general categories; they repeated this evaluation one month later. The reliability of the VA was measured by calculating intra-reviewer and inter-reviewer kappa statistics. The validity of the VA was measured using the GCS cause of death as the gold standard. RESULTS: VA showed both good validity (sensitivity, specificity, PPV, and NPV all above 0.81) and reliability (kappa>0.75) in determining the general cause of death independent of sex and place of residence. The overall multi-rater agreement across four reviews was 0.84 (95%CI: 0.78-0.89). The results for identifying specific cancer deaths were also promising, especially for upper GI cancers (kappa = 0.95). The multi-rater agreement in cancer subgroup was 0.93 (95%CI: 0.85-0.99). CONCLUSIONS: VA seems to have good reliability and validity for determining the cause of death in a large-scale adult follow up study in a predominantly rural area of a middle-income country

    Uropathogenic Escherichia coli P and Type 1 Fimbriae Act in Synergy in a Living Host to Facilitate Renal Colonization Leading to Nephron Obstruction

    Get PDF
    The progression of a natural bacterial infection is a dynamic process influenced by the physiological characteristics of the target organ. Recent developments in live animal imaging allow for the study of the dynamic microbe-host interplay in real-time as the infection progresses within an organ of a live host. Here we used multiphoton microscopy-based live animal imaging, combined with advanced surgical procedures, to investigate the role of uropathogenic Escherichia coli (UPEC) attachment organelles P and Type 1 fimbriae in renal bacterial infection. A GFP+ expressing variant of UPEC strain CFT073 and genetically well-defined isogenic mutants were microinfused into rat glomerulus or proximal tubules. Within 2 h bacteria colonized along the flat squamous epithelium of the Bowman's capsule despite being exposed to the primary filtrate. When facing the challenge of the filtrate flow in the proximal tubule, the P and Type 1 fimbriae appeared to act in synergy to promote colonization. P fimbriae enhanced early colonization of the tubular epithelium, while Type 1 fimbriae mediated colonization of the center of the tubule via a mechanism believed to involve inter-bacterial binding and biofilm formation. The heterogeneous bacterial community within the tubule subsequently affected renal filtration leading to total obstruction of the nephron within 8 h. Our results reveal the importance of physiological factors such as filtration in determining bacterial colonization patterns, and demonstrate that the spatial resolution of an infectious niche can be as small as the center, or periphery, of a tubule lumen. Furthermore, our data show how secondary physiological injuries such as obstruction contribute to the full pathophysiology of pyelonephritis

    BMP9 Protects Septal Neurons from Axotomy-Evoked Loss of Cholinergic Phenotype

    Get PDF
    Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer's disease. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiating factor during development both in vivo and in vitro.To determine whether BMP9 could protect the adult cholinergic septohippocampal pathway from axotomy-evoked loss of the cholinergic phenotype, we performed unilateral fimbria-fornix transection in mice and treated them with a continuous intracerebroventricular infusion of BMP9 for six days. The number of choline acetyltransferase (CHAT)-positive cells was reduced by 50% in the medial septal nucleus ipsilateral to the lesion as compared to the intact, contralateral side, and BMP9 infusion prevented this loss in a dose-dependent manner. Moreover, BMP9 prevented most of the decline of hippocampal acetylcholine levels ipsilateral to the lesion, and markedly increased CHAT, choline transporter CHT, NGF receptors p75 (NGFR-p75) and TrkA (NTRK1), and NGF protein content in both the lesioned and unlesioned hippocampi. In addition, BMP9 infusion reduced bilaterally hippocampal levels of basic FGF (FGF2) protein.These data indicate that BMP9 administration can prevent lesion-evoked impairment of the cholinergic septohippocampal neurons in adult mice and, by inducing NGF, establishes a trophic environment for these cells

    The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success

    Get PDF
    Male-biased size dimorphism is usually expected to evolve in taxa with intense male–male competition for mates, and it is hence associated with high variances in male mating success. Most species of pycnogonid sea spiders exhibit female-biased size dimorphism, and are notable among arthropods for having exclusive male parental care of embryos. Relatively little, however, is known about their natural history, breeding ecology, and mating systems. Here we first show that Ammothella biunguiculata, a small intertidal sea spider, exhibits male-biased size dimorphism. Moreover, we combine genetic parentage analysis with quantitative measures of sexual selection to show that male body size does not appear to be under directional selection. Simulations of random mating revealed that mate acquisition in this species is largely driven by chance factors, although actual paternity success is likely non-randomly distributed. Finally, the opportunity for sexual selection (Is), an indirect metric for the potential strength of sexual selection, in A. biunguiculata males was less than half of that estimated in a sea spider with female-biased size dimorphism, suggesting the direction of size dimorphism may not be a reliable predictor of the intensity of sexual selection in this group. We highlight the suitability of pycnogonids as model systems for addressing questions relating parental investment and sexual selection, as well as the current lack of basic information on their natural history and breeding ecology
    • …
    corecore