61 research outputs found

    Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code

    Get PDF
    Background: The suppression of amber stop codons with non-canonical amino acids (ncAAs) is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS)/amber suppressor tRNA CUA pairs (o-pairs) for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNACUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid. Methodology/Principal Findings: We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs. Conclusions/Significance: O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detaile

    Wnt signaling in triple-negative breast cancer

    Get PDF
    Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    Evidence From Autoimmune Thyroiditis Of Skewed X-Chromosome Inactivation In Female Predisposition To Autoimmunity

    Get PDF
    The etiologic factors in the development of autoimmune thyroid diseases (AITDs) are not fully understood. We investigated the role of skewed X-chromosome inactivation (XCI) mosaicism in female predisposition to AITDs. One hundred and ten female AITDs patients ( 81 Hashimoto's thyroiditis ( HT), 29 Graves' disease (GD)), and 160 female controls were analyzed for the androgen receptor locus by the HpaII/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral blood cells. In addition, thyroid biopsy, buccal mucosa, and hair follicle specimens were obtained from five patients whose blood revealed an extremely skewed pattern of XCI, and the analysis was repeated. Skewed XCI was observed in DNA from peripheral blood cells in 28 of 83 informative patients (34%) as compared with 10 of 124 informative controls (8%, P < 0.0001). Extreme skewing was present in 16 patients (19%), but only in three controls (2.4%, P < 0.0001). The buccal mucosa, and although less marked, the thyroid specimens also showed skewing. Analysis of two familial cases showed that only the affected individuals demonstrate skewed XCI patterns. Based on these results, skewed XCI mosaicism may play a significant role in the pathogenesis of AITDs.Wo
    corecore