15 research outputs found
Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions
Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genomeencoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10−4 –5.6 × 10−3 ) and in 30 regions 5604 | Human Molecular Genetics, 2015, Vol. 24, No. 19 we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10−6 ) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation
Sec5 and Exo84 Mediate Distinct Aspects of RalA-Dependent Cell Polarization
Metastasis is a complex process during which several gross cellular changes occur. Cells must dissociate from the tumor mass and gain the ability to degrade extracellular matrix and migrate in order to ultimately attach and form a satellite tumor. Regulation of the actin cytoskeleton is an indispensible aspect of cell migration, and many different factors have been implicated in this process. We identified interactions between RalA and its effectors in the Exocyst complex as directly necessary for migration and invasion of prostate cancer tumor cells. Blocking RalA-Exocyst binding caused significant morphological changes and defects in single and coordinated cell migration
Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster
Control of growth determines the size and shape of organs. Localized signals known as 'organizers' and members of the Pax family of proto-oncogenes are both elements in this control. Pax proteins have a conserved DNA-binding paired domain, which is presumed to be essential for their oncogenic activity. We present evidence that the organizing signal Notch does not promote growth in eyes of D. melanogaster through either Eyeless (Ey) or Twin of eyeless (Toy), the two Pax6 transcription factors. Instead, it acts through Eyegone (Eyg), which has a truncated paired domain, consisting of only the C-terminal subregion. In humans and mice, the sole PAX6 gene produces the isoform PAX6(5a) by alternative splicing; like Eyegone, this isoform binds DNA though the C terminus of the paired domain. Overexpression of human PAX6(5a) induces strong overgrowth in vivo, whereas the canonical PAX6 variant hardly effects growth. These results show that growth and eye specification are subject to independent control and explain hyperplasia in a new way.Part of this work was done in the laboratory of P. A. Lawrence at the Medical Research Council Laboratory of Molecular Biology in Cambridge (UK). This work was supported by grants from Fondo de Investigaciones Sanitarias and Ministerio de Ciencia y TecnologÃa from Spain and by a European Molecular Biology Organisation Young Investigator Award to M.D.Peer reviewe
The contribution of rare variation to prostate cancer heritability
We report targeted sequencing of 63 known prostate cancer risk regions in a multi-ancestry study of 9,237 men and use the data to explore the contribution of low-frequency variation to disease risk. We show that SNPs with minor allele frequencies (MAFs) of 0.1-1% explain a substantial fraction of prostate cancer risk in men of African ancestry. We estimate that these SNPs account for 0.12 (standard error (s.e.) = 0.05) of variance in risk (∼42% of the variance contributed by SNPs with MAF of 0.1-50%). This contribution is much larger than the fraction of neutral variation due to SNPs in this class, implying that natural selection has driven down the frequency of many prostate cancer risk alleles; we estimate the coupling between selection and allelic effects at 0.48 (95% confidence interval [0.19, 0.78]) under the Eyre-Walker model. Our results indicate that rare variants make a disproportionate contribution to genetic risk for prostate cancer and suggest the possibility that rare variants may also have an outsize effect on other common traits
Exocyst Sec5 Regulates Exocytosis of Newcomer Insulin Granules Underlying Biphasic Insulin Secretion
Post-GWAS in prostate cancer: from genetic association to biological contribution
Genome-wide association studies (GWAS) have been successful in deciphering the genetic component of predisposition to many human complex diseases including prostate cancer. Germline variants identified by GWAS progressively unravelled the substantial knowledge gap concerning prostate cancer heritability. With the beginning of the post-GWAS era, more and more studies reveal that, in addition to their value as risk markers, germline variants can exert active roles in prostate oncogenesis. Consequently, current research efforts focus on exploring the biological mechanisms underlying specific susceptibility loci known as causal variants by applying novel and precise analytical methods to available GWAS data. Results obtained from these post-GWAS analyses have highlighted the potential of exploiting prostate cancer risk-associated germline variants to identify new gene networks and signalling pathways involved in prostate tumorigenesis. In this Review, we describe the molecular basis of several important prostate cancer-causal variants with an emphasis on using post-GWAS analysis to gain insight into cancer aetiology. In addition to discussing the current status of post-GWAS studies, we also summarize the main molecular mechanisms of potential causal variants at prostate cancer risk loci and explore the major challenges in moving from association to functional studies and their implication in clinical translation