13 research outputs found

    The Performance of SLNR Beamformers in Multi-User MIMO Systems

    Get PDF
    YesBeamforming in multi-user MIMO (MU-MIMO) systems is a vital part of modern wireless communication systems. Researchers looking for best operational performance normally optimize the problem and then solve for best weight solutions. The weight optimization problem contains variables in numerator and dominator: this leads to so-called variable coupling, making the problem hard to solve. Formulating the optimization in terms of the signal to leakage and noise ratio (SLNR) helps in decoupling the problem variables. In this paper we study the performance of the SLNR with variable numbers of users and handset antennas. The results show that there is an optimum and the capacity curve is a concave over these two parameters. The performances of two further variations of this method are also considered

    Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice

    Get PDF
    BACKGROUND: During lactation, the CNS is less responsive to the anxiogenic neuropeptide, corticotropin-releasing factor (CRF). Further, central injections of CRF inhibit maternal aggression and some maternal behaviors, suggesting decreased CRF neurotransmission during lactation supports maternal behaviors. In this study, we examined the maternal profile of mice missing the CRF receptor 1 (CRFR1). Offspring of knockout (CRFR1-/-) mice were heterozygote to offset possible deleterious effects of low maternal glucocorticoids on pup survival and all mice contained a mixed 50:50 inbred/outbred background to improve overall maternal profiles and fecundity. RESULTS: Relative to littermate wild-type (WT) controls, CRFR1-/- mice exhibited significant deficits in total time nursing, including high arched-back, on each test day. Consistent with decreased nursing, pups of CRFR1-deficient dams weighed significantly less than WT offspring. Licking and grooming of pups was significantly higher in WT mice on postpartum Day 2 and when both test days were averaged, but not on Day 3. Time off nest was higher for CRFR1-/- mice on Day 2, but not on Day 3 or when test days were averaged. Licking and grooming of pups did not differ on Day 2 when this measure was examined as a proportion of time on nest. CRFR1-/- mice showed significantly higher nest building on Day 3 and when tests were averaged. Mean pup number was almost identical between groups and no pup mortality occurred. Maternal aggression was consistently lower in CRFR1-/- mice and in some measures these differences approached, but did not reach significance. Because of high variance, general aggression results are viewed as preliminary. In terms of sites of attacks on intruders, CRFR1-/- mice exhibited significantly fewer attacks to the belly of the intruder on Day 5 and when tests were averaged. Performance on the elevated plus maze was similar between genotypes. Egr-1 expression differences in medial preoptic nucleus and c-Fos expression differences in bed nucleus of stria terminalis between genotype suggest possible sites where loss of gene alters behavioral output. CONCLUSION: Taken together, the results suggest that the presence of an intact CRFR1 receptor supports some aspects of nurturing behavior

    The Newly Developed CRF1-Receptor Antagonists, NGD 98-2 and NGD 9002, Suppress Acute Stress-Induced Stimulation of Colonic Motor Function and Visceral Hypersensitivity in Rats

    Get PDF
    Corticotropin releasing factor receptor 1 (CRF(1)) is the key receptor that mediates stress-related body responses. However to date there are no CRF(1) antagonists that have shown clinical efficacy in stress-related diseases. We investigated the inhibitory effects of a new generation, topology 2 selective CRF(1) antagonists, NGD 98-2 and NGD 9002 on exogenous and endogenous CRF-induced stimulation of colonic function and visceral hypersensitivity to colorectal distension (CRD) in conscious rats. CRF(1) antagonists or vehicle were administered orogastrically (og) or subcutaneously (sc) before either intracerebroventricular (icv) or intraperitoneal (ip) injection of CRF (10 µg/kg), exposure to water avoidance stress (WAS, 60 min) or repeated CRD (60 mmHg twice, 10 min on/off at a 30 min interval). Fecal pellet output (FPO), diarrhea and visceromotor responses were monitored. In vehicle (og)-pretreated rats, icv CRF stimulated FPO and induced diarrhea in >50% of rats. NGD 98-2 or NGD 9002 (3, 10 and 30 mg/kg, og) reduced the CRF-induced FPO response with an inhibitory IC(50) of 15.7 and 4.3 mg/kg respectively. At the highest dose, og NGD 98-2 or NGD 9002 blocked icv CRF-induced FPO by 67–87% and decreased WAS-induced-FPO by 23–53%. When administered sc, NGD 98-2 or NGD 9002 (30 mg/kg) inhibited icv and ip CRF-induced-FPO. The antagonists also prevented the development of nociceptive hyper-responsivity to repeated CRD. These data demonstrate that topology 2 CRF(1) antagonists, NGD 98-2 and NGD 9002, administered orally, prevented icv CRF-induced colonic secretomotor stimulation, reduced acute WAS-induced defecation and blocked the induction of visceral sensitization to repeated CRD
    corecore