2,107 research outputs found

    Uniform semiclassical approximation in quantum statistical mechanics

    Full text link
    We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.Comment: 5 pages, 1 figure, Latex. Contribution to the Proceedings of the XXI Brazilian National Meeting on Particles and Fields (Sao Lourenco, October 23-27, 2000

    Scaling laws for the decay of multiqubit entanglement

    Full text link
    We investigate the decay of entanglement of generalized N-particle Greenberger-Horne-Zeilinger (GHZ) states interacting with independent reservoirs. Scaling laws for the decay of entanglement and for its finite-time extinction (sudden death) are derived for different types of reservoirs. The latter is found to increase with the number of particles. However, entanglement becomes arbitrarily small, and therefore useless as a resource, much before it completely disappears, around a time which is inversely proportional to the number of particles. We also show that the decay of multi-particle GHZ states can generate bound entangled states.Comment: Minor mistakes correcte

    Driving-dependent damping of Rabi oscillations in two-level semiconductor systems

    Full text link
    We propose a mechanism to explain the nature of the damping of Rabi oscillations with increasing driving-pulse area in localized semiconductor systems, and have suggested a general approach which describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi oscillations might occur as a result of different dephasing mechanisms for both stationary and non-stationary effects due to coupling to the environment. Present calculated results are found in quite good agreement with available experimental measurements

    Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial

    Get PDF
    Light propagation through 1D disordered structures composed of alternating layers, with random thicknesses, of air and a dispersive metamaterial is theoretically investigated. Both normal and oblique incidences are considered. By means of numerical simulations and an analytical theory, we have established that Anderson localization of light may be suppressed: (i) in the long wavelength limit, for a finite angle of incidence which depends on the parameters of the dispersive metamaterial; (ii) for isolated frequencies and for specific angles of incidence, corresponding to Brewster anomalies in both positive- and negative-refraction regimes of the dispersive metamaterial. These results suggest that Anderson localization of light could be explored to control and tune light propagation in disordered metamaterials.Comment: 4 two-column pages, 3 figure

    Two-dimensional electron gas in a uniform magnetic field in the presence of a delta-impurity

    Full text link
    The density of states and the Hall conductivity of a two-dimensional electron gas in a uniform magnetic field and in the presence of a delta impurity are exactly calculated using elementary field theoretic techniques. Although these results are not new, our treatment is explicitly gauge-invariant, and can be easily adapted to other problems involving a delta potential.Comment: 12+1 pages, 1 ps figure, REVTEX. Corrigendum adde

    Nonrelativistic Scattering Analysis of Charged Particle by a Magnetic Monopole in the Global Monopole Background

    Full text link
    We analyze the nonrelativistic quantum scattering problem of a charged particle by an Abelian magnetic monopole in the background of a global monopole. In addition to the magnetic and geometric effects, we consider the influence of the electrostatic self-interaction on the charged particle. Moreover, for the specific case where the electrostatic self-interaction becomes attractive, charged particle-monopole bound system can be formed and the respective energy spectrum is hydrogen-like one.Comment: 10 pages. Contribution to the Proceedings of "2nd International Londrina Winter School Mathematical Methods in Physics". August 26-30, 2002, Londrina, PR, Brazi

    Esporulação e eficiência de infecção do míldio da videira em cenários de mudanças climáticas.

    Get PDF
    O objetivo deste trabalho foi avaliar o efeito das mudanças climáticas na favorabilidade à ocorrência de míldio (Plasmopara viticola) na região de Bento Gonçalves-RS no período de 2020 a 2050. Este trabalho teve como base modelos de eficiência de infecção (EI) e esporulação (S) que descrevem esses processos com base em temperatura, duração do molhamento e duração de períodos com alta umidade. Para simulações futuras, foram usados os dados de temperatura do modelo climático regional PRECIS nos cenários IPCC A2 e B2 para 2020, 30, 40 e 50. Os resultados indicam pequena diminuição na frequência de dias com EI "alta" (0,7 a 1,0), o que também se reflete em pequena redução nas médias de EI. Por outro lado, ocorre um aumento mais expressivo na S, mais que compensando a perda de EI, resultando em provável maior intensidade da doença no futuro próximo, mantidas as condições de temperatura mais elevada e umidade estável

    Onsager Loop-Transition and First Order Flux-Line Lattice Melting in High-TcT_c Superconductors

    Full text link
    Monte-Carlo simulations in conjunction with finite-size scaling analysis are used to investigate the (H,T)(H,T)-phase diagram in uniaxial anisotropic high- TcT_c superconductors, both in zero magnetic field and in intermediate magnetic fields for various mass-anisotropies. The model we consider is the uniformly frustrated anisotropic Villain Model. In zero magnetic field, and for all anisotropies considered, we find one single second order phase transition, mediated by an Onsager vortex-loop blowout. This is the superconductor-normal metal transition.A comparison with numerical simulations and a critical scaling analysis of the zero-field loop-transition yields the same exponent of the loop distribution function at the critical point. In the intermediate magnetic field regime, we find two anomalies in the specific heat. The first anomaly at a temperature TmT_m is associated with the melting transition of the flux-line lattice. The second anomaly at a temperature TzT_z is one where phase coherence along the field direction is destroyed. We argue that Tm=TzT_m=T_z in the thermodynamic and continuum limit. Hence, there is no regime where the flux line lattice melts into a disentangled flux-line liquid. The loss of phase coherence parallel to the magnetic field in the sample is argued to be due to the proliferation of closed non-field induced vortex loops on the scale of the magnetic length in the problem, resulting in flux-line cutting and recombination. In the flux-line liquid phase, therefore, flux-lines appear no longer to be well defined entities. A finite-size scaling analysis of the delta function peak specific heat anomaly at the melting transition is used to extract the discontinuity of the entropy at the melting transition.This entropy discontinuity is found to increase rapidly with mass-anisotropy.Comment: 22 pages, 11 figures included, to be published in Phys. Rev. B, 57 xxx (1998
    • …
    corecore