79 research outputs found

    ZnO/ionic liquid catalyzed biodiesel production from renewable and waste lipids as feedstocks

    Get PDF
    A new protocol for biodiesel production is proposed, based on a binary ZnO/TBAI (TBAI = tetrabutylammonium iodide) catalytic system. Zinc oxide acts as a heterogeneous, bifunctional Lewis acid/base catalyst, while TBAI plays the role of phase transfer agent. Being composed by the bulk form powders, the whole catalyst system proved to be easy to use, without requiring nano-structuration or tedious and costly preparation or pre-activation procedures. In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to common vegetable oils (e.g., soybean, jatropha, linseed, etc.) and animal fats (lard and fish oil), but also to waste lipids such as cooking oils (WCOs), highly acidic lipids from oil industry processing, and lipid fractions of municipal sewage sludge. Reusability of the catalyst system together with kinetic (Ea) and thermodynamic parameters of activation (∆G‡ and ∆H‡) are also studied for transesterification reaction

    The role of geological origin of smectites and of their physico-chemical properties on aflatoxin adsorption

    Get PDF
    Since 2013, bentonite in the form of dioctahedral smectite is an additive authorised in the EU as a substance for the reduction of the contamination of feed by aflatoxins. Several studies indicate a big difference in the effectiveness of smectites in sequestering aflatoxins. A clear correlation between mineralogical and physico-chemical properties of smectites and aflatoxin adsorption has not been well established. In the effort to identify the most critical mineralogical, chemical, and physical properties that affect aflatoxin adsorption by smectites, 29 samples of bentonites obtained from different sources around the world were evaluated. “As received” samples were divided into two main groups, i.e. hydrothermal (n=14) and sedimentary (n=15) bentonites depending on their geological origin. The characterization studies showed that all samples contained dioctahedral smectite as major mineral; a moderate CEC value (60-116 cmol/kg); the presence of iron; a small organic matter content; a near-neutral pH; and a fine and uniform particle size (<45ÎŒm). They differed substantially in their sodium, calcium and magnesium contents, and in the swelling properties depending on the geological origin. Several in vitro adsorption studies showed that they also differed in a significant manner in adsorbing aflatoxin B1 (AFB1). A correlation between geological origin and AFB1 adsorption capacity was found (p<0.001), being sedimentary smectites significantly more effective than hydrothermal ones in adsorbing the toxin at different pH values. The extent of AFB1 adsorption by all samples was negatively and linearly correlated to the extent of desorption, and sedimentary smectites were significantly more effective than hydrothermal smectites in keeping bound the adsorbed fraction of the toxin (p < 0.001). In addition, correlation studies using the Pearson statistical method showed a significant relationship among some physico-chemical properties of smectites and the amounts of adsorbed toxin. In particular, AFB1 adsorption by smectites correlated positively with sodium content and swell index, but negatively with d001-value, magnesium and calcium contents. In conclusion, it seems that the geological origin of smectite is a useful guide for the selection of bentonites for AFB1 detoxification. Sedimentary bentonites containing sodium/swelling-smectite should be preferred to hydrothermal samples as potential aflatoxin binders. Taking into account the geographical origin of our samples, this approach should be applicable to bentonites worldwide

    Green procedure for one-pot synthesis of azelaic acid derivatives using metal catalysis

    Get PDF
    Background &amp; Objective: A green one-pot synthesis of oleic acid (1) derivatives is promoted by Rare Earth Metal (REM) triflates and commercial Molybdenum dioxo dichloride (MoCl 2 O 2 ) in the presence hydrogen peroxide as a green oxidant. Results: The protocol permits to govern the oxidation selectivity by simply choosing the proper combination of Mo and Sc catalysts. Conclusion: Methyl oleate epoxide 2a and azelaic acid 6 thus obtained are valuable industrial intermediates for synthesizing bio-compostable plastics, plasticizers of PVC, lubricating oils, cosmetics and pharmaceuticals (bactericides, anti-inflammatories, etc.)

    Eudragit s100 entrapped liposome for curcumin delivery: Anti-oxidative effect in Caco-2 cells

    Get PDF
    Curcumin is a natural polyphenol with strong antioxidant activity. However, this molecule shows a very poor bioavailability, instability, and rapid metabolism in vivo. In this work curcumin was loaded in Eudragit-coated liposomes to create a gastroresistant carrier, able to protect its load from degradation and free it at the site of absorption in the colon region. Small unilamellar vesicles were prepared and coated with Eudragit by a pH-driven method. The physico-chemical properties of the prepared systems were assessed by light scattering, transmission electron microscopy, infrared spectroscopy, and differential scanning calorimetry. The uptake of vesicles by Caco-2 cells and the anti-oxidant activity in cells were evaluated. The produced vesicles showed dimensions of about forty nanometers that after covering with Eudragit resulted to have micrometric dimensions at acid pH. The experiments showed that at pH &gt; 7.0 the polymeric coating dissolves, releasing the nanometric liposomes and allowing them to enter Caco-2 cells. Delivered curcumin loaded vesicles were then able to decrease significantly ROS levels as induced by H2O2 in Caco-2 cells. The proposed work showed the possibility of realizing effective gastroresistant curcumin liposome formulations for the delivery of antioxidant molecules to Caco-2 cells, potentially applicable to the treatment of pathological conditions related to intestinal oxidative stress. View Full-Tex

    Polymer Encapsulated Liposomes for Oral Co-Delivery of Curcumin and Hydroxytyrosol

    Get PDF
    Curcumin (Cur) is a hydrophobic polyphenol from the rhizome of Curcuma spp., while hydroxytyrosol (HT) is a water-soluble polyphenol from Olea europaea. Both show outstanding antioxidant properties but suffer from scarce bioavailability and low stability in biological fluids. In this work, the co-encapsulation of Cur and HT into liposomes was realized, and the liposomal formulation was improved using polymers to increase their survival in the gastrointestinal tract. Liposomes with different compositions were formulated: Type 1, composed of phospholipids and cholesterol; Type 2, also with a PEG coating; and Type 3 providing an additional shell of EudragitÂź S100, a gastro-resistant polymer. Samples were characterized in terms of size, morphology, ζ-potential, encapsulation efficiency, and loading capacity. All samples were subjected to a simulated in vitro digestion and their stability was investigated. The EudragitÂźS100 coating demonstrated prevention of early releases of HT in the mouth and gastric phases, while the PEG shell reduced bile salts and pancreatin effects during the intestinal digestion. In vitro antioxidant activity showed a cumulative effect for Cur and HT loaded in vesicles. Finally, liposomes with HT concentrations up to 40 ÎŒM and Cur up to 4.7 ÎŒM, alone or in combination, did not show cytotoxicity against Caco-2 cells

    Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli)

    Get PDF
    In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC–ESI–MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel “green” approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted

    Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases

    Get PDF
    The aim of the present investigation was to evaluate the influence of liposome formulation on the ability of vesicles to penetrate a pathological mucus model obtained from COPD affected patients in order to assess the potential of such vesicles for the treatment of chronic respiratory diseases by inhalation. Therefore, Small Unilamellar Liposomes (PLAIN-LIPOSOMEs), PluronicŸ F127- surface modified liposomes (PF-LIPOSOMEs) and PEG 2000PE-surface modified liposomes (PEG-LIPOSOMEs) were prepared using the micelle-to-vesicle transition (MVT) method and beclomethasone dipropionate (BDP) as model drug. The obtained liposomes showed diameters in the range of 40-65 nm, PDI values between 0.25-0.30 and surface electric charge essentially close to zero. The encapsulation efficiency was found to be dependent on the BDP/lipid ratio used and, furthermore, BDP-loaded liposomes were stable in size both at 37°C and at 4°C. All liposomes were not cytotoxic on H441 cell line as assessed by the MTT assay. The liposome uptake was evaluated through a cytofluorimetric assay that showed a non-significant reduction in the internalization of PEG-LIPOSOMEs as compared with PLAIN-LIPOSOMEs. The penetration studies of mucus from COPD patients showed that the PEG-LIPOSOMEs were the most mucuspenetrating vesicles after 27 hours. In addition, PEG- and PF-LIPOSOMEs did not cause any effect on bronchoalveolar lavage fluid proteins after aerosol administration in the mouse. The results highlight that PEG-LIPOSOMEs show the most interesting features in terms of penetration through the pathologic sputum, uptake by airway epithelial cells and safety profile
    • 

    corecore