1,179 research outputs found

    Determination of inorganic phosphorus in serum: Evaluation of three methods applied to the Technicon RA-1000 analyzer

    Get PDF
    We have evaluated three analytical methods for determining inorganic phosphorus in serum applied to the Technicon RA-I000 analyzer: a fully enzymatic colorimetric method based on the specific system purine nucleoside phosphorylase/xanthine oxidase coupled to an indicator colorimetric reaction similar to the Trinder reaction; a chemical method involving the direct UV measurement of the phosphomolybdate complex; and a chemical method with reduction of the phosphomolybdate complex to molybdenum blue. Experiments were performed to assess within-run and between-day precision, linearity, interference and correlation. The best performance characteristics were shown by the enzymatic colorimetric method and the phosphomolybdate UV method

    The Maximal Pore Size of Hydrophobic Microporous Membranes Does Not Fully Characterize the Resistance to Plasma Breakthrough of Membrane Devices for Extracorporeal Blood Oxygenation

    Get PDF
    open4Extracorporeal membrane oxygenation (ECMO) in blood-outside devices equipped with hydrophobic membranes has become routine treatment of respiratory or cardiac failure. In spite of membrane hydrophobicity, significant amounts of plasma water may form in the gas compartment during treatment, an event termed plasma water breakthrough. When this occurs, plasma water occludes some gas pathways and ultimately cripples the oxygenator gas exchange capacity requiring its substitution. This causes patient hemodilution and increases the activation of the patient's immune system. On these grounds, the resistance to plasma water breakthrough is regarded as an important feature of ECMO devices. Many possible events may explain the occurrence of plasma breakthrough. In spite of this, the resistance to plasma breakthrough of ECMO devices is commercially characterized only with respect to the membrane maximal pore size, evaluated by the bubble pressure method or by SEM analysis of membrane surfaces. The discrepancy between the complexity of the events causing plasma breakthrough in ECMO devices (hence determining their resistance to plasma breakthrough), and that claimed commercially has caused legal suits on the occasion of the purchase of large stocks of ECMO devices by large hospitals or regional institutions. The main aim of this study was to identify some factors that contribute to determining the resistance to plasma breakthrough of ECMO devices, as a means to minimize litigations triggered by an improper definition of the requirements of a clinically efficient ECMO device. The results obtained show that: membrane resistance to breakthrough should be related to the size of the pores inside the membrane wall rather than at its surface; membranes with similar nominal maximal pore size may exhibit pores with significantly different size distribution; membrane pore size distribution rather than the maximal pore size determines membrane resistance to breakthrough; the presence of surfactants in the patient's blood (e.g., lipids, alcohol, etc.) may significantly modify the intrinsic membrane resistance to breakthrough, more so the higher the surfactant concentration. We conclude that the requirements of ECMO devices in terms of resistance to plasma breakthrough ought to account for all these factors and not rely only on membrane maximal pore size.openFragomeni Gionata, Terzini Mara, Comite Antonio, Catapano GerardoFragomeni, Gionata; Terzini, Mara; Comite, Antonio; Catapano, Gerard

    Class II Phosphoinositide 3-Kinases Contribute to Endothelial Cells Morphogenesis

    Get PDF
    PMCID: PMC3539993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Effects of emphysema on oxygen uptake during maximal exercise in COPD.

    Get PDF

    On the Combined Use of Ground Penetrating Radar and Crack Meter Sensors for Structural Monitoring: Application to the Historical Consoli Palace in Gubbio, Italy

    Get PDF
    The paper deals with joint use of non-invasive monitoring technologies and civil engineering analysis methods aimed at providing multi-sensing information about the structural health of historical and cultural assets. Specifically, linear variable displacement transducers (LVDT) and ground penetrating radar (GPR) are considered for monitoring a significant crack affecting the Consoli Palace in Gubbio, Italy, precisely one of the walls of the cross-hall leading to the Loggia. In this frame, LVDT is adopted to control horizontal amplitude variations of the crack, while GPR is applied to investigate the wall interior and to detect the occurrence of inner issues related to the visible appearance of the crack on the wall surface. The effectiveness of GPR surveys is improved by means of a microwave tomography-based data processing strategy. The main result is that there is a consistency between the monitoring outputs of LVDT, which allowed us to display the crack widening/contraction due to the seasonal temperature variations, and the fact that no significant changes of the geometry of the inner areas of the walls were observed by the GPR

    Complete-arch accuracy of four intraoral scanners: An in vitro study

    Get PDF
    The purpose of this study is to define the accuracy of four intraoral scanners (IOS) through the analysis of digital impressions of a complete dental arch model. Eight metal inserts were placed on the model as reference points and then it was scanned with a laboratory scanner in order to obtain the reference model. Subsequently, the reference model was scanned with four IOS (Carestream 3600, CEREC Omnicam, True Definition Scanner, Trios 3Shape). Linear measurements were traced on an STL file between the chosen reference points and divided into four categories: three-element mesiodistal, five-element mesiodistal, diagonal, and contralateral measurements. The digital reference values for the measurements were then compared with the values obtained from the scans to analyze the accuracy of the IOS using ANOVA. There were no statistically significant differences between the measurements of the digital scans obtained with the four IOS systems for any of the measurement groups tested

    The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment.

    Get PDF
    Metastatic prostate cancer represents a yet unsolved clinical problem due to the high frequency of relapse and treatment resistance. Understanding the pathways that lead to prostate cancer progression is an important task to prevent this deadly disease. The ETS transcription factor ESE3/EHF has an important role in differentiation of human prostate epithelial cells. Loss of ESE3/EHF in prostate epithelial cells determines transformation, epithelial-to-mesenchymal transition (EMT) and acquisition of stem-like properties. In this study we identify IL-6 as a direct target of ESE3/EHF that is activated in prostate epithelial cells upon loss of ESE3/EHF. ESE3/EHF and IL-6 were significantly inversely correlated in prostate tumors. Chromatin immunoprecipitation confirmed binding of ESE3/EHF to a novel ETS binding site in the IL-6 gene promoter. Inhibition of IL-6 reverted transformation and stem-like phenotype in tumorigenic ESE3/EHF knockdown prostate epithelial cell models. Conversely, IL-6 stimulation induced malignant phenotypes, stem-like behavior and STAT3 activation. Increased level of IL-6 was observed in prostatospheres compared with adherent bulk cancer cells and this was associated with stronger activation of STAT3. Human prostate tumors with IL-6 elevation and loss of ESE3/EHF were associated with STAT3 activation and displayed upregulation of genes related to cell adhesion, cancer stem-like and metastatic spread. Pharmacological inhibition of IL-6/STAT3 activation by a JAK inhibitor restrained cancer stem cell growth in vitro and inhibited self-renewal in vivo. This study identifies a novel connection between the transcription factor ESE3/EHF and the IL-6/JAK/STAT3 pathway and suggests that targeting this axis might be preferentially beneficial in tumors with loss of ESE3/EHF

    High-density lipoprotein revisited: biological functions and clinical relevance

    Full text link
    Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease

    The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine

    Get PDF
    The purpose of this article is to provide an overview on the role of CT scan and MRI according to selected guidelines by the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA). ESC and ACC/AHA guidelines were systematically reviewed for recommendations to CT and MRI use in specific cardiovascular (CV) clinical categories. All recommendations were collected in a dataset, including the class of recommendation, the level of evidence (LOE), the specific imaging technique, the clinical purpose of the recommendation and the recommending Society. Among the 43 included guidelines (ESC: n = 18, ACC/AHA: n = 25), 26 (60.4%) contained recommendations for CT scan or MRI (146 recommendations: 62 for CT and 84 for MRI). Class of recommendation IIa (32.9%) was the most represented, followed by I (28.1%), IIb (24%) and III (11.9%). MRI recommendations more frequently being of higher class (I: 36.9%, IIa: 29.8%, IIb: 21.4%, III: 11.9%) as compared to CT (I: 16.1%, IIa: 37.1%, IIb: 27.4%, III: 19.4%). Most of recommendation (55.5%) were based on expert opinion (LOE C). The use of cardiac CT and cardiac MR in the risk assessment, diagnosis, therapeutic and procedural planning is in continuous development, driven by an increasing need to evolve toward an imaging-guided precision medicine, combined with cost-effectiveness and healthcare sustainability. These developments must be accompanied by an increased availability of high-performance scanners in healthcare facilities and should emphasize the need of increasing the number of radiologists fully trained in cardiac imaging

    Deciphering the complexity of human non-coding promoter-proximal transcriptome.

    Get PDF
    Long non-coding RNAs (lncRNAs) have gained increasing relevance in epigenetic regulation and nuclear functional organization. High-throughput sequencing approaches have revealed frequent non-coding transcription in promoter-proximal regions. However, a comprehensive catalogue of promoter-associated RNAs (paRNAs) and an analysis of the possible interactions with neighboring genes and genomic regulatory elements are missing. Integrating data from multiple cell types and experimental platforms we identified thousands of paRNAs in the human genome. paRNAs are transcribed in both sense and antisense orientation, are mostly non-polyadenylated and retained in the cell nucleus. Transcriptional regulators, epigenetic effectors and activating chromatin marks are enriched in paRNA-positive promoters. Furthermore, paRNA-positive promoters exhibit chromatin signatures of both active promoters and enhancers. Promoters with paRNAs reside preferentially at chromatin loop boundaries, suggesting an involvement in anchor site recognition and chromatin looping. Importantly, these features are independent of the transcriptional state of neighboring genes. Thus, paRNAs may act as cis-regulatory modules with an impact on local recruitment of transcription factors, epigenetic state and chromatin loop organization. This study provides a comprehensive analysis of the promoter-proximal transcriptome and offers novel insights into the roles of paRNAs in epigenetic processes and human diseases. Genomic coordinates of predicted paRNAs are available at https://figshare.com: https://doi.org/10.6084/m9.figshare.7392791.v1 and https://doi.org/10.6084/m9.figshare.4856630.v2. Supplementary data are available at Bioinformatics online
    corecore