2 research outputs found

    Agricultural policies against invasive species generate contrasting outcomes for climate change mitigation and biodiversity conservation

    Get PDF
    Direct consequences of biological invasions on biodiversity and the environment have been largely documented. Yet collateral indirect effects mediated by changes in agri-environmental policies aimed at combating invasions remain little explored. Here we assessed the effects of recent changes in water management in rice farming, which are aimed at buffering the impact of the invasive apple snail (Pomacea maculata, Lamarck) on greenhouse gas emissions and diversity of waterbird communities. We used observational data from a 2-year field monitoring (2015–2016) performed at the Ebro Delta regional scale. We found that drying rice fields reduced methane emission rates by 82% (2015) and 51% (2016), thereby reducing the contribution of rice farming to climate change. However, there was a marked reduction (75% in 2015 and 57% in 2016) in waterbird diversity in dry fields compared with flooded fields, thus suggesting that post-invasion policies might hinder biodiversity conservation. Our results highlight the need for accounting for potential collateral effects during the policy decision-making process to design efficient agricultural management plans that lessen undesirable agri-environmental outcomes.info:eu-repo/semantics/acceptedVersio

    A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance

    Get PDF
    [EN] Persimmon (Diospyros kaki Thunb.) production is facing important problems related to climate change in the Mediterranean areas. One of them is soil salinization caused by the decrease and change of the rainfall distribution. In this context, there is a need to develop cultivars adapted to the increasingly challenging soil conditions. In this study, a backcross between (D. kaki x D. virginiana) x D. kaki was conducted, to unravel the mechanism involved in salinity tolerance of persimmon. The backcross involved the two species most used as rootstock for persimmon production. Both species are clearly distinct in their level of tolerance to salinity. Variables related to growth, leaf gas exchange, leaf water relations and content of nutrients were significantly affected by saline stress in the backcross population. Water flow regulation appears as a mechanism of salt tolerance in persimmon via differences in water potential and transpiration rate, which reduces ion entrance in the plant. Genetic expression of eight putative orthologous genes involved in different mechanisms leading to salt tolerance was analyzed. Differences in expression levels among populations under saline or control treatment were found. The 'High affinity potassium transporter' (HKT1-like) reduced its expression levels in the roots in all studied populations. Results obtained allowed selection of tolerant rootstocks genotypes and describe the hypothesis about the mechanisms involved in salt tolerance in persimmon that will be useful for breeding salinity tolerant rootstocks.This study was funded by the IVIA and the European Funds for Regional Development. F. G.M.was funded by a PhD fellowship from the European Social Fund and the Generalitat Valenciana (ACIF/2016/115). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Gil Muñoz, F.; Pérez-Pérez, JG.; Quiñones, A.; Primo-Capella, A.; Cebolla Cornejo, J.; Forner Giner, MA.; Badenes Catala, M.... (2020). A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance. PLoS ONE. 15(2):1-27. https://doi.org/10.1371/journal.pone.0229023S127152Visconti, F., de Paz, J. M., Bonet, L., Jordà, M., Quiñones, A., & Intrigliolo, D. S. (2015). Effects of a commercial calcium protein hydrolysate on the salt tolerance of Diospyros kaki L. cv. «Rojo Brillante» grafted on Diospyros lotus L. Scientia Horticulturae, 185, 129-138. doi:10.1016/j.scienta.2015.01.028Forner-Giner, M. A., & Ancillo, G. (2013). Breeding Salinity Tolerance in Citrus Using Rootstocks. Salt Stress in Plants, 355-376. doi:10.1007/978-1-4614-6108-1_14Visconti, F., Intrigliolo, D. S., Quiñones, A., Tudela, L., Bonet, L., & de Paz, J. M. (2017). Differences in specific chloride toxicity to Diospyros kaki cv. «Rojo Brillante» grafted on D. lotus and D. virginiana. Scientia Horticulturae, 214, 83-90. doi:10.1016/j.scienta.2016.11.025INCESU, M., CIMEN, B., YESILOGLU, T., & YILMAZ, B. (2014). Growth and Photosynthetic Response of Two Persimmon Rootstocks (Diospyros kaki and D. virginiana) under Different Salinity Levels. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 386-391. doi:10.15835/nbha4229471De Paz, J. M., Visconti, F., Chiaravalle, M., & Quiñones, A. (2016). Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS). Analytical and Bioanalytical Chemistry, 408(13), 3537-3545. doi:10.1007/s00216-016-9430-2Gil-Muñoz, F., Peche, P. M., Climent, J., Forner, M. A., Naval, M. M., & Badenes, M. L. (2018). Breeding and screening persimmon rootstocks for saline stress tolerance. Acta Horticulturae, (1195), 105-110. doi:10.17660/actahortic.2018.1195.18Besada, C., Gil, R., Bonet, L., Quiñones, A., Intrigliolo, D., & Salvador, A. (2016). Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiology and Biochemistry, 100, 105-112. doi:10.1016/j.plaphy.2016.01.006Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18. doi:10.3390/agronomy7010018Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Sibole, J. V., Cabot, C., Poschenrieder, C., & Barceló, J. (2003). Ion allocation in two different salt-tolerant MediterraneanMedicagospecies. Journal of Plant Physiology, 160(11), 1361-1365. doi:10.1078/0176-1617-00811CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.xSHAPIRA, O., KHADKA, S., ISRAELI, Y., SHANI, U., & SCHWARTZ, A. (2009). Functional anatomy controls ion distribution in banana leaves: significance of Na+seclusion at the leaf margins. Plant, Cell & Environment, 32(5), 476-485. doi:10.1111/j.1365-3040.2009.01941.xHuang, C. X., & Van Steveninck, R. F. M. (1989). Maintenance of Low Cl− Concentrations in Mesophyll Cells of Leaf Blades of Barley Seedlings Exposed to Salt Stress. Plant Physiology, 90(4), 1440-1443. doi:10.1104/pp.90.4.1440Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Differential Ion Accumulation and Ion Fluxes in the Mesophyll and Epidermis of Barley. Plant Physiology, 122(3), 835-844. doi:10.1104/pp.122.3.835Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends in Plant Science, 5(11), 465-470. doi:10.1016/s1360-1385(00)01758-1JAMES, R. A., MUNNS, R., VON CAEMMERER, S., TREJO, C., MILLER, C., & CONDON, T. (A. G. . (2006). Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat. Plant, Cell and Environment, 29(12), 2185-2197. doi:10.1111/j.1365-3040.2006.01592.xZekri, M., & Parsons, L. R. (1989). Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiologia Plantarum, 77(1), 99-106. doi:10.1111/j.1399-3054.1989.tb05984.xJoly, R. J. (1989). Effects of Sodium Chloride on the Hydraulic Conductivity of Soybean Root Systems. Plant Physiology, 91(4), 1262-1265. doi:10.1104/pp.91.4.1262Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., … Kjellbom, P. (2001). The Complete Set of Genes Encoding Major Intrinsic Proteins in Arabidopsis Provides a Framework for a New Nomenclature for Major Intrinsic Proteins in Plants. Plant Physiology, 126(4), 1358-1369. doi:10.1104/pp.126.4.1358Carmen Martínez-Ballesta, M., Aparicio, F., Pallás, V., Martínez, V., & Carvajal, M. (2003). Influence of saline stress on root hydraulic conductance and PIP expression inArabidopsis. Journal of Plant Physiology, 160(6), 689-697. doi:10.1078/0176-1617-00861Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029López-Pérez, L., Martínez-Ballesta, M. del C., Maurel, C., & Carvajal, M. (2009). Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry, 70(4), 492-500. doi:10.1016/j.phytochem.2009.01.014Rodríguez-Gamir, J., Ancillo, G., Legaz, F., Primo-Millo, E., & Forner-Giner, M. A. (2012). Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environmental and Experimental Botany, 78, 163-166. doi:10.1016/j.envexpbot.2011.12.027Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology, 164(4), 1600-1618. doi:10.1104/pp.113.233791Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9TESTER, M. (2003). Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91(5), 503-527. doi:10.1093/aob/mcg058Qiu, Q.-S., Barkla, B. J., Vera-Estrella, R., Zhu, J.-K., & Schumaker, K. S. (2003). Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis. Plant Physiology, 132(2), 1041-1052. doi:10.1104/pp.102.010421Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. The Plant Cell, 14(2), 465-477. doi:10.1105/tpc.010371Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. The Plant Cell, 10(7), 1181-1191. doi:10.1105/tpc.10.7.1181Liu, J., & Zhu, J.-K. (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 280(5371), 1943-1945. doi:10.1126/science.280.5371.1943Halfter, U., Ishitani, M., & Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, 97(7), 3735-3740. doi:10.1073/pnas.97.7.3735Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., & Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97(7), 3730-3734. doi:10.1073/pnas.97.7.3730Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., … Harmon, A. C. (2003). The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 132(2), 666-680. doi:10.1104/pp.102.011999Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences, 97(12), 6896-6901. doi:10.1073/pnas.120170197Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. doi:10.1073/pnas.122224699Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. doi:10.1073/pnas.132092099Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., … Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. doi:10.1073/pnas.1018921108Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 6(2), 275-286. doi:10.1093/mp/sst017Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080Evans, A. R., Hall, D., Pritchard, J., & Newbury, H. J. (2011). The roles of the cation transporters CHX21 and CHX23 in the development of Arabidopsis thaliana. Journal of Experimental Botany, 63(1), 59-67. doi:10.1093/jxb/err271Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., … Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae  . Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., … Schroeder, J. I. (2002). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 531(2), 157-161. doi:10.1016/s0014-5793(02)03488-9Berthomieu, P. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 22(9), 2004-2014. doi:10.1093/emboj/cdg207Rus, A., Lee, B., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.-K., … Hasegawa, P. M. (2004). AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 136(1), 2500-2511. doi:10.1104/pp.104.042234Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., … Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.xHuang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., & Munns, R. (2006). A Sodium Transporter (HKT7) Is a Candidate forNax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 142(4), 1718-1727. doi:10.1104/pp.106.088864Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E. S., Dennis, E. S., … Munns, R. (2007). HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 143(4), 1918-1928. doi:10.1104/pp.106.093476Garciadeblás, B., Senn, M. E., Bañuelos, M. A., & Rodríguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. The Plant Journal, 34(6), 788-801. doi:10.1046/j.1365-313x.2003.01764.xHuang, S., Spielmeyer, W., Lagudah, E. S., & Munns, R. (2008). Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 59(4), 927-937. doi:10.1093/jxb/ern033Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., … Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732Almeida, P., Katschnig, D., & de Boer, A. (2013). HKT Transporters—State of the Art. International Journal of Molecular Sciences, 14(10), 20359-20385. doi:10.3390/ijms141020359Cellier, F., Conéjéro, G., Ricaud, L., Luu, D. T., Lepetit, M., Gosti, F., & Casse, F. (2004). Characterization ofAtCHX17, a member of the cation/H+exchangers, CHX family, fromArabidopsis thalianasuggests a role in K+homeostasis. The Plant Journal, 39(6), 834-846. doi:10.1111/j.1365-313x.2004.02177.xSong, C.-P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D. W., Jagendorf, A., & Zhu, J.-K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(27), 10211-10216. doi:10.1073/pnas.0403709101Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M., & Sze, H. (2007). Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 144(1), 82-93. doi:10.1104/pp.106.092155Szczerba, M. W., Britto, D. T., & Kronzucker, H. J. (2009). K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 166(5), 447-466. doi:10.1016/j.jplph.2008.12.009Brini, F., Gaxiola, R. A., Berkowitz, G. A., & Masmoudi, K. (2005). Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry, 43(4), 347-354. doi:10.1016/j.plaphy.2005.02.010Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., … Pardo, J. M. (2012). Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis. The Plant Cell, 24(3), 1127-1142. doi:10.1105/tpc.111.095273Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., & Wege, S. (2011). Anion Channels/Transporters in Plants: From Molecular Bases to Regulatory Networks. Annual Review of Plant Biology, 62(1), 25-51. doi:10.1146/annurev-arplant-042110-103741Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na + /H + Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., & Fink, G. R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences, 98(20), 11444-11449. doi:10.1073/pnas.191389398Callister, A. N., Arndt, S. K., & Adams, M. A. (2006). Comparison of four methods for measuring osmotic potential of tree leaves. Physiologia Plantarum, 127(3), 383-392. doi:10.1111/j.1399-3054.2006.00652.xBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060Gilliam, J. W. (1971). Rapid Measurement of Chlorine in Plant Materials. Soil Science Society of America Journal, 35(3), 512-513. doi:10.2136/sssaj1971.03615995003500030051xGambino, G., Perrone, I., & Gribaudo, I. (2008). A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19(6), 520-525. doi:10.1002/pca.1078Akagi, T., Henry, I. M., Kawai, T., Comai, L., & Tao, R. (2016). Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon. The Plant Cell, 28(12), 2905-2915. doi:10.1105/tpc.16.00532Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Research, 64(15), 5245-5250. doi:10.1158/0008-5472.can-04-0496Akagi, T., Ikegami, A., Tsujimoto, T., Kobayashi, S., Sato, A., Kono, A., & Yonemori, K. (2009). DkMyb4 Is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology, 151(4), 2028-2045. doi:10.1104/pp.109.146985Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (2018). Graphical Methods for Data Analysis. doi:10.1201/9781351072304Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xMunns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.xBrugnoli, E., & Lauteri, M. (1991). Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes. Plant Physiology, 95(2), 628-635. doi:10.1104/pp.95.2.628Koyro, H.-W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56(2), 136-146. doi:10.1016/j.envexpbot.2005.02.001Rahnama, A., James, R. A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255. doi:10.1071/fp09148Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., & Zhang, H. (2018). Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01363Horie, T., Sugawara, M., Okunou, K., Nakayama, H., Schroeder, J. I., Shinmyo, A., & Yoshida, K. (2008). Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 25(3), 233-239. doi:10.5511/plantbiotechnology.25.233Hazzouri, K. M., Khraiwesh, B., Amiri, K. M. A., Pauli, D., Blake, T., Shahid, M., … Masmoudi, K. (2018). Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00156Han, Y., Yin, S., Huang, L., Wu, X., Zeng, J., Liu, X., … Zhang, G. (2018). A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 59(10), 1976-1989. doi:10.1093/pcp/pcy116Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8Vitali, V., Bellati, J., Soto, G., Ayub, N. D., & Amodeo, G. (2015). Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants, 7, plv136. doi:10.1093/aobpla/plv13
    corecore