46,280 research outputs found

    Spin and pseudospin symmetries of the Dirac equation with confining central potentials

    Full text link
    We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar SS and vector VV confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+CV=\pm S+C, where CC is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not happen for potentials going to zero at large distances, used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for anti-fermions.Comment: 7 pages, uses revtex macro

    Improved methods for the travelling salesperson problem with hotel selection

    Get PDF
    In this talk, a new formulation and a new metaheuristic solution procedure for the travelling salesperson problem with hotel selection (TSPHS) is presented. The metaheuristic is a multi-start procedure that outperforms existing heuristics on all benchmark instances. We also provide a number of new optimal solutions found by a commercial solver extended with a dedicated cutting plane procedure, as well as new best known solutions for most benchmark instances

    New solutions of the D-dimensional Klein-Gordon equation via mapping onto the nonrelativistic one-dimensional Morse potential

    Full text link
    New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approac

    Wigner Oscillators, Twisted Hopf Algebras and Second Quantization

    Full text link
    By correctly identifying the role of central extension in the centrally extended Heisenberg algebra h, we show that it is indeed possible to construct a Hopf algebraic structure on the corresponding enveloping algebra U(h) and eventually deform it through Drinfeld twist. This Hopf algebraic structure and its deformed version U^F(h) are shown to be induced from a more fundamental Hopf algebra obtained from the Schroedinger field/oscillator algebra and its deformed version, provided that the fields/oscillators are regarded as odd-elements of the super-algebra osp(1|2n). We also discuss the possible implications in the context of quantum statistics.Comment: 23 page

    Magnetic-field and chemical-potential effects on the low-energy separation

    Full text link
    We show that in the presence of a magnetic field the usual low-energy separation of the Hubbard chain is replaced by a ``cc'' and ``ss'' separation. Here cc and ss refer to small-momentum and low-energy independent excitation modes which couple both to charge and spin. Importantly, we find the exact generators of these excitations both in the electronic and pseudoparticle basis. In the limit of zero magnetic field these generators become the usual charge and spin fluctuation operators. The cc and ss elementary excitations are associated with the cc and ss pseudoparticles, respectively. We also study the separate pseudoparticle left and right conservation laws. In the presence of the magnetic field the small-momentum and low-energy excitations can be bosonized. However, the suitable bosonization corresponds to the cc and ss pseudoparticle modes and not to the usual charge and spin fluctuations. We evaluate exactly the commutator between the electronic-density operators. Its spin-dependent factor is in general non diagonal and depends on the interaction. The associate bosonic commutation relations characterize the present unconventional low-energy separation.Comment: 29 pages, latex, submitted to Phys. Rev.

    Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)2_2X

    Full text link
    High-resolution thermal expansion measurements have been performed for exploring the mysterious "structureless transition" in (TMTTF)2_{2}X (X = PF6_{6} and AsF6_{6}), where charge ordering at TCOT_{CO} coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at TCOT_{CO} in the uniaxial expansivity along the interstack c*\textbf{\textit{c*}}-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X−^{-}. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at TintT_{int} ≃\simeq 0.6 ⋅\cdot TCOT_{CO} indicative of a phase transition related to the charge ordering

    Combining high-value biotechnological processes: from wastewaters bioremediation to bacterial bioenergy feedstock production

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017[Excerpt] The significant increase of global industrialization has been promoting the generation of large amounts of residues and wastewaters. In particular, oily wastewaters (contaminated with hydrocarbons) must be considered, since their disposal into the surrounding environments can represent a serious threat to several types of environmental resources. Simultaneously, the drastic depletion of fossil fuel resources demands for search of alternative feedstocks with environmental and economic advantages. Therefore, the production of bacterial lipids using inexpensive substrates, as wastes, has attracted much attention. Hydrocarbonoclastic bacteria are important players in bioremediation of hydrocarbon contaminated wastewaters with additional capacity for the accumulation of storage lipids such as triacylglycerols and wax esters [1, 2]. These compounds are relevant raw materials for biofuels and oleochemicals production. [...]info:eu-repo/semantics/publishedVersio
    • …
    corecore