753 research outputs found

    A calculation methodology for the determination of the dynamic alongwind response of tall structures under wind action

    Get PDF
    La optimización de los métodos de cálculo, junto al avance de la tecnología en la construcción de estructuras civiles, permiten actualmente diseñar y construir estructuras cada vez más livianas, de baja rigidez y amortiguamiento, transformándolas en elementos altamente sensibles a los efectos dinámicos inducidos por la acción del viento. El objetivo de este trabajo es el de describir y aplicar una metodología sencilla de cálculo que permita la determinación de la respuesta dinámica longitudinal en el dominio del tiempo de estructuras altas sometidas a la acción del viento. El campo de velocidad de viento se reproduce mediante series de velocidad que incluyen la función de coherencia, para luego transformarlas en fuerzas nodales fluctuantes utilizando el modelo de carga cuasi-estático. Para incluir el efecto de promediado imperfecto asociado a los nodos discretizados, se incorpora además la función de admitancia aerodinámica. Mediante la metodología propuesta se analizan dos estructuras ampliamente estudiadas por otros autores, las cuales consisten en una torre de acero y el CAARC Standard Tall Building. Los resultados así obtenidos presentan concordancia con los reportados por la bibliografía de referencia.The optimization of computing methods along with the advance of construction technology of civil structures, allow nowadays to design and build lighter and low stiffness and damping structures, turning them into elements of high sensitivity against wind-induced dynamic effects. The purpose of this work is to describe and to apply a simple calculation methodology that enables the determination of the longitudinal dynamic response of tall buildings in time domain. The wind velocity field is reproduced by velocity series that incorporate the coherence function which then are transformed into fluctuating nodal forces using the quasi-static loading model. Furthermore, to include the effect of imperfect averaging associated with the discretized nodes, the aerodynamic admittance function is added. Through the proposed methodology two structures widely studied by other authors are analyzed: a steel tower and the CAARC Standard Tall Building. The results thus obtained show agreement with those reported in the literature.Peer Reviewe

    Naturalness and theoretical constraints on the Higgs boson mass

    Full text link
    Arbitrary regularization dependent parameters in Quantum Field Theory are usually fixed on symmetry or phenomenology grounds. We verify that the quadratically divergent behavior responsible for the lack of naturalness in the Standard Model (SM) is intrinsically arbitrary and regularization dependent. While quadratic divergences are welcome for instance in effective models of low energy QCD, they pose a problem in the SM treated as an effective theory in the Higgs sector. Being the very existence of quadratic divergences a matter of debate, a plausible scenario is to search for a symmetry requirement that could fix the arbitrary coefficient of the leading quadratic behavior to the Higgs boson mass to zero. We show that this is possible employing consistency of scale symmetry breaking by quantum corrections. Besides eliminating a fine-tuning problem and restoring validity of perturbation theory, this requirement allows to construct bounds for the Higgs boson mass in terms of δm2/mH2\delta m^2/m^2_H (where mHm_H is the renormalized Higgs mass and δm2\delta m^2 is the 1-loop Higgs mass correction). Whereas δm2/mH2<1\delta m^2/m^2_H<1 (perturbative regime) in this scenario allows the Higgs boson mass around the current accepted value, the inclusion of the quadratic divergence demands δm2/mH2\delta m^2/m^2_H arbitrarily large to reach that experimental value.Comment: 6 pages, 4 figure

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
    corecore