46,670 research outputs found

    Comment on "Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential"

    Full text link
    It is shown that the paper "Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential", by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.Comment: 2 page

    Corroborating the equivalence between the Duffin-Kemmer-Petiau and the Klein-Gordon and Proca equations

    Full text link
    It is shown that the Hamiltonian version of the Duffin-Kemmer-Petiau theory with electromagnetic coupling brings about a source term at the current. It is also shown that such a source term disappears from the scenario if one uses the correct physical form for the Duffin-Kemmer-Petiau field, regardless the choice for representing the Duffin-Kemmer-Petiau matrices. This result is used to fix the ambiguity in the electromagnetic coupling in the Duffin-Kemmer-Petiau theory. Moreover, some widespread misconceptions about the Hermiticity in the Duffin-Kemmer-Petiau theory are discussed.Comment: 13 pages, to appears in Phys. Rev.

    On the bound-state spectrum of a nonrelativistic particle in the background of a short-ranged linear potential

    Full text link
    The nonrelativistic problem of a particle immersed in a triangular potential well, set forth by N.A. Rao and B.A. Kagali, is revised. It is shown that these researchers misunderstood the full meaning of the potential and obtained a wrong quantization condition. By exploring the space inversion symmetry, this work presents the correct solution to this problem with potential applications in electronics in a simple and transparent way

    Missing solution in a Cornell potential

    Full text link
    Missing bound-state solutions for fermions in the background of a Cornell potential consisting of a mixed scalar-vector-pseudoscalar coupling is examined. Charge-conjugation operation, degeneracy and localization are discussed

    Atomically thin dilute magnetism in Co-doped phosphorene

    Full text link
    Two-dimensional dilute magnetic semiconductors can provide fundamental insights in the very nature of magnetic orders and their manipulation through electron and hole doping. Despite the fundamental physics, due to the large charge density control capability in these materials, they can be extremely important in spintronics applications such as spin valve and spin-based transistors. In this article, we studied a two-dimensional dilute magnetic semiconductors consisting of phosphorene monolayer doped with cobalt atoms in substitutional and interstitial defects. We show that these defects can be stabilized and are electrically active. Furthermore, by including holes or electrons by a potential gate, the exchange interaction and magnetic order can be engineered, and may even induce a ferromagnetic-to-antiferromagnetic phase transition in p-doped phosphorene.Comment: 7 pages, 4 colorful figure

    Relativistic Effects of Mixed Vector-Scalar-Pseudoscalar Potentials for Fermions in 1+1 Dimensions

    Full text link
    The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar P\"{o}schl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases

    Unified Treatment of Mixed Vector-Scalar Screened Coulomb Potentials for Fermions

    Full text link
    The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.Comment: 7 page

    Noncommutative associative superproduct for general supersymplectic forms

    Full text link
    We define a noncommutative and nonanticommutative associative product for general supersymplectic forms, allowing the explicit treatment of non(anti)commutative field theories from general nonconstant string backgrounds like a graviphoton field. We propose a generalization of deformation quantization a la Fedosov to superspace, which considers noncommutativity in the tangent bundle instead of base space, by defining the Weyl super product of elements of Weyl super algebra bundles. Super Poincare symmetry is not broken and chirality seems not to be compromised in our formulation. We show that, for a particular case, the projection of the Weyl super product to the base space gives rise the Moyal product for non(anti)commutative theories.Comment: 22 pages, revtex4. References added. Comments added. Includes additional theorem proof
    corecore