2,795 research outputs found

    Disturbances in the spontaneous attribution of social meaning in schizophrenia

    Get PDF
    Background. Schizophrenia patients show disturbances on a range of tasks that assess mentalizing or 'Theory of Mind' (ToM). However, these tasks are often developmentally inappropriate, make large demands on verbal abilities and explicit problem-solving skills, and involve after-the-fact reflection as opposed to spontaneous mentalizing. Method. To address these limitations, 55 clinically stable schizophrenia out-patients and 44 healthy controls completed a validated Animations Task designed to assess spontaneous attributions of social meaning to ambiguous abstract visual stimuli. In this paradigm, 12 animations depict two geometric shapes' interacting' with each other in three conditions: (1) ToM interactions that elicit attributions of mental states to the agents, (2) Goal-Directed (GO) interactions that elicit attributions of simple actions, and (3) Random scenes in which no interaction occurs. Verbal descriptions of each animation are rated for the degree of Intentionality attributed to the agents and for accuracy. Results. Patients had lower Intentionality ratings than controls for ToM and GO scenes but the groups did not significantly differ for Random scenes. The descriptions of the patients less closely matched the situations intended by the developers of the task. Within the schizophrenia group, performance on the Animations Task showed minimal associations with clinical symptoms. Conclusions. Patients demonstrated disturbances in the spontaneous attribution of mental states to abstract visual stimuli that normally evoke such attributions. Hence, in addition to previously established impairment on mentalizing tasks that require logical inferences about others' mental states, individuals with schizophrenia show disturbances in implicit aspects of mentalizing

    The Distance of the First Overtone RR Lyrae Variables in the MACHO LMC Database: A New Method to Correct for the Effects of Crowding

    Full text link
    Previous studies have indicated that many of the RR Lyrae variables in the LMC have properties similar to the ones in the Galactic globular cluster M3. Assuming that the M3 RR Lyrae variables follow the same relationships among period, temperature, amplitude and Fourier phase parameter phi31 as their LMC counterparts, we have used the M3 phi31-logP relation to identify the M3-like unevolved first overtone RR Lyrae variables in 16 fields near the LMC bar. The temperatures of these variables were calculated from the M3 logP-logTe relation so that the extinction could be derived for each star separately. Since blended stars have lower amplitudes for a given period, the period amplitude relation should be a useful tool for identifying which stars are affected by crowding. We find that the low amplitude stars are brighter. We remove them from the sample and derive an LMC distance modulus 18.49+/-0.11.Comment: 30 pages, 7 figures, accepted for publication in the Astronomical Journa

    Apparent superluminal advancement of a single photon far beyond its coherence length

    Full text link
    We present experimental results relative to superluminal propagation based on a single photon traversing an optical system, called 4f-system, which acts singularly on the photon's spectral component phases. A single photon is created by a CW laser light down{conversion process. The introduction of a linear spectral phase function will lead to the shift of the photon peak far beyond the coherence length of the photon itself (an apparent superluminal propagation of the photon). Superluminal group velocity detection is done by interferometric measurement of the temporal shifted photon with its correlated untouched reference. The observed superluminal photon propagation complies with causality. The operation of the optical system allows to enlighten the origin of the apparent superluminal photon velocity. The experiment foresees a superluminal effect with single photon wavepackets.Comment: 11 pages, 2 figure

    Carbon sp chains in graphene nanoholes

    Full text link
    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab-initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. We adopt a fair compromise of microscopic realism with a certain level of idealization in the model configurations, and predict a number of properties susceptible to comparison with experiment.Comment: 34 pages, 27 figure

    A Dispersion Operator for Geometric Semantic Genetic Programming

    Get PDF
    Recent advances in geometric semantic genetic programming (GSGP) have shown that the results obtained by these methods can outperform those obtained by classical genetic programming algorithms, in particular in the context of symbolic regression. However, there are still many open issues on how to improve their search mechanism. One of these issues is how to get around the fact that the GSGP crossover operator cannot generate solutions that are placed outside the convex hull formed by the individuals of the current population. Although the mutation operator alleviates this problem, we cannot guarantee it will find promising regions of the search space within feasible computational time. In this direction, this paper proposes a new geometric dispersion operator that uses multiplicative factors to move individuals to less dense areas of the search space around the target solution before applying semantic genetic operators. Experiments in sixteen datasets show that the results obtained by the proposed operator are statistically significantly better than those produced by GSGP and that the operator does indeed spread the solutions around the target solution

    How well do self-supervised models transfer to medical imaging?

    Get PDF
    Self-supervised learning approaches have seen success transferring between similar medical imaging datasets, however there has been no large scale attempt to compare the transferability of self-supervised models against each other on medical images. In this study, we compare the generalisability of seven self-supervised models, two of which were trained in-domain, against supervised baselines across eight different medical datasets. We find that ImageNet pretrained self-supervised models are more generalisable than their supervised counterparts, scoring up to 10% better on medical classification tasks. The two in-domain pretrained models outperformed other models by over 20% on in-domain tasks, however they suffered significant loss of accuracy on all other tasks. Our investigation of the feature representations suggests that this trend may be due to the models learning to focus too heavily on specific areas

    The Rise of the s-Process in the Galaxy

    Full text link
    From newly-obtained high-resolution, high signal-to-noise ratio spectra the abundances of the elements La and Eu have been determined over the stellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarf stars. Lanthanum is predominantly made by the s-process in the solar system, while Eu owes most of its solar system abundance to the r-process. The changing ratio of these elements in stars over a wide metallicity range traces the changing contributions of these two processes to the Galactic abundance mix. Large s-process abundances can be the result of mass transfer from very evolved stars, so to identify these cases, we also report carbon abundances in our metal-poor stars. Results indicate that the s-process may be active as early as [Fe/H]=-2.6, alalthough we also find that some stars as metal-rich as [Fe/H]=-1 show no strong indication of s-process enrichment. There is a significant spread in the level of s-process enrichment even at solar metallicity.Comment: 64 pages, 15 figures; ApJ 2004 in pres

    Galaxy populations in the Antlia cluster. I. Photometric properties of early-type galaxies

    Get PDF
    We present the first colour-magnitude relation (CMR) of early-type galaxies in the central region of the Antlia cluster, obtained from CCD wide-field photometry in the Washington photometric system. Integrated (C -T1) colours, T1 magnitudes, and effective radii have been measured for 93 galaxies (i.e. the largest galaxies sample in the Washington system till now) from the FS90 catalogue (Ferguson & Sandage 1990). Membership of 37 objects can be confirmed through new radial velocities and data collected from the literature. The resulting colour-magnitude diagram shows that early-type FS90 galaxies that are spectroscopically confirmed Antlia members or that were considered as definite members by FS90, follow a well defined CMR (sigma_(C -T1) ~ 0.07 mag) that spans 9 magnitudes in brightness with no apparent change of slope. This relation is very tight for the whole magnitude range but S0 galaxies show a larger dispersion, apparently due to a separation of ellipticals and S0s. Antlia displays a slope of -13.6 in a T1 vs. (C -T1) diagram, in agreement with results for clusters like Fornax, Virgo, Perseus and Coma, which are dynamically different to Antlia. This fact might indicate that the build up of the CMR in cluster of galaxies is more related to galaxies internal processes than to the influence of the environment. Interpreting the CMR as a luminosity-metallicity relation of old stellar systems, the metallicities of the Antlia galaxies define a global relation down to Mv ~ -13. We also find, for early-type dwarfs, no clear relation between luminosity and effective radius, indicating a nearly constant mean effective radius of ~ 1 kpc. This value is also found in several samples of dwarf galaxies in Virgo and Coma.Comment: 13 pages, 6 figures. Accepted for publication in MNRA

    Empirically Constrained Color-Temperature Relations. II. uvby

    Full text link
    (Abriged) A new grid of theoretical color indices for the Stromgren uvby photometric system has been derived from MARCS model atmospheres and SSG synthetic spectra for cool dwarf and giant stars. At warmer temperatures this grid has been supplemented with the synthetic uvby colors from recent Kurucz atmospheric models without overshooting. Our transformations appear to reproduce the observed colors of extremely metal-poor turnoff and giant stars (i.e., [Fe/H]<-2). Due to a number of assumptions made in the synthetic color calculations, however, our color-temperature relations for cool stars fail to provide a suitable match to the uvby photometry of both cluster and field stars having [Fe/H]>-2. To overcome this problem, the theoretical indices at intermediate and high metallicities have been corrected using a set of color calibrations based on field stars having accurate IRFM temperature estimates and spectroscopic [Fe/H] values. Encouragingly, isochrones that employ the transformations derived in this study are able to reproduce the observed CMDs (involving u-v, v-b, and b-y colors) for a number of open and globular clusters (including M92, M67, the Hyades, and 47Tuc) rather well. Moreover, our interpretations of such data are very similar, if not identical, with those given by VandenBerg & Clem (2003, AJ, 126, 778) from a consideration of BV(RI)c observations for the same clusters. In the present investigation, we have also analyzed the observed Stromgren photometry for the classic Population II subdwarfs, compared our "final" (b-y)-Teff relationship with those derived empirically in a number of recent studies, and examined in some detail the dependence of the m1 index on [Fe/H].Comment: 70 pages, 26 figures. Accepted for publication in AJ (Feb 2004). Postscript version with high resolution figures and complete Table 3 available at http://astrowww.phys.uvic.ca/~jclem/uvb

    On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models

    Full text link
    Stellar models have been computed for stars having [Fe/H] = 0.0 and -2.0 to determine the effects of using boundary conditions derived from the latest MARCS model atmospheres. The latter were fitted to the interior models at both the photosphere and at tau = 100, and at least for the 0.8-1.0 solar mass stars considered here, the resultant evolutionary tracks were found to be nearly independent of the chosen fitting point. Particular care was taken to treat the entire star as consistently as possible; i.e., both the interior and atmosphere codes assumed the same abundances and the same treatment of convection. Tracks were also computed using either the classical gray T(tau,T_eff) relation or that derived by Krishna Swamy (1966) to derive the boundary pressure. The latter predict warmer giant branches (by ~150 K) at solar abundances than those based on gray or MARCS atmospheres, which happens to be in good agreement with the inferred temperatures of giants in the open cluster M67 from the latest (V-K)-T_eff relations. Most of the calculations assumed Z=0.0125 (Asplund et al.), though a few models were computed for Z=0.0165 (Grevesse & Sauval) to determine the dependence of the tracks on Z_\odot. Grids of "scaled solar, differentially corrected" (SDC) atmospheres were also computed to try to improve upon theoretical MARCS models. When they were used as boundary conditions, the resultant tracks agreed very well with those based on a standard scaled-solar (e.g., Krishna Swamy) T(tau,T_eff) relation, independently of the assumed metal abundance. Fits of isochrones to the C-M diagram of the [Fe/H] = -2 globular cluster M68 were examined, as was the possibility that the mixing-length parameter varies with stellar parameters.Comment: 54 pages, including 20 figures and 3 tables; accepted (July 2007) for publication in the Astrophysical Journa
    • …
    corecore