
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Oliveira, Luiz O.V.B. and Otero, Fernando E.B. and Pappa, Gisele L. (2016) A Dispersion Operator
for Geometric Semantic Genetic Programming. In: Genetic and Evolutionary Computation
Conference (GECCO 2016), 20-24 July 2016, Denver, United States.

DOI

https://doi.org/10.1145/2908812.2908923

Link to record in KAR

http://kar.kent.ac.uk/55156/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/42411684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Dispersion Operator
for Geometric Semantic Genetic Programming

Luiz Otavio V. B. Oliveira
Dep. Computer Science

UFMG
Belo Horizonte, Brazil

luizvbo@dcc.ufmg.br

Fernando E. B. Otero
School of Computing

University of Kent
Chatham Maritime, UK

F.E.B.Otero@kent.ac.uk

Gisele L. Pappa
Dep. Computer Science

UFMG
Belo Horizonte, Brazil

glpappa@dcc.ufmg.br

ABSTRACT

Recent advances in geometric semantic genetic programming
(GSGP) have shown that the results obtained by these meth-
ods can outperform those obtained by classical genetic pro-
gramming algorithms, in particular in the context of sym-
bolic regression. However, there are still many open issues
on how to improve their search mechanism. One of these is-
sues is how to get around the fact that the GSGP crossover
operator cannot generate solutions that are placed outside
the convex hull formed by the individuals of the current
population. Although the mutation operator alleviates this
problem, we cannot guarantee it will find promising regions
of the search space within feasible computational time. In
this direction, this paper proposes a new geometric disper-
sion operator that uses multiplicative factors to move indi-
viduals to less dense areas of the search space around the
target solution before applying semantic genetic operators.
Experiments in sixteen datasets show that the results ob-
tained by the proposed operator are statistically significantly
better than those produced by GSGP and that the operator
does indeed spread the solutions around the target solution.

CCS Concepts

•Computing methodologies→Heuristic function con-

struction; Genetic programming;

Keywords

geometric semantic genetic programming; geometric seman-
tic crossover; convex hull

1. INTRODUCTION
In recent years, several studies have attempted to in-

clude semantic knowledge into the search mechanism of ge-
netic programming algorithms, producing positive impacts
on their search performance [19]. In supervised learning pro-
blems, including symbolic regression, the semantics of an in-
dividual is defined as the vector of output values produced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20 - 24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908923

when applying the function the GP individual represents to
the set of training cases [19].

One of the seminal works in the field of semantic ge-
netic programming proposed geometric versions of the
crossover and mutation operators, namely geometric seman-
tic crossover (GSX) and mutation (GSM) operators [14].
These operators guarantee the semantic fitness landscape
explored by GP is conic, a property with positive effects on
the search process. There is formal evidence that indicates
evolutionary algorithms with geometric operators can op-
timise cone landscapes with good results for virtually any
metric [13]. However, geometric semantic genetic program-
ming (GSGP) still presents drawbacks.

One of them comes from the fact that, when using only the
crossover operator—which produces offspring by perform-
ing a convex combination of its parents—the set of possible
individuals generated during evolution is delimited by the
convex hull of the semantics of the current population [16].
The convex hull of a set of points is given by the set of all
convex combinations of these points [17]. Hence, if the tar-
get output is not within the convex hull, the algorithm will
never be able to find it.

The mutation operator appears as the solution to this
problem, as it can expand the semantic search space and,
consequently, the population convex hull. However, depend-
ing on how far from the target solution the individuals in the
initial population are, GSGP may take a prohibitive amount
of time to reach the relevant region of the search space where
the target output is.

In this context, this paper proposes a new geometric se-
mantic operator, named geometric dispersion (GD). GD
takes as input a single individual and moves it in the seman-
tic space aiming to better distribute the population around
the target output. By doing that GD increases the chances
of generating a convex hull from the population semantics
that contains the target output vector (out) (see Figure 1).
In contrast with GSM, which randomly moves the individual
within a hypersphere around it, the geometric dispersion op-
erator is deterministic, and moves the individual along a line
crossing the origin of the semantic space to sparse regions
around the target output.

We performed experiments in 16 symbolic regression
datasets, and compared the results with the GSGP with-
out using the operator and a canonical GP. Results of root
mean square error showed that the proposed operator leads
GSGP to obtain statistically significantly better results than
the other two methods. An analysis of the distribution of
the solutions along the dimensions of the semantic space

also showed the operator does spread the solutions in the
semantic space.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background on GSGP, and Section 3 dis-
cusses different approaches proposed to increase the convex
hull of the population. Section 4 introduces the geometric
dispersion operator, while Section 5 shows results and em-
pirical comparisons with GSGP and GP. Finally, Section 6
draws conclusions and presents directions for future work.

2. GEOMETRIC SEMANTIC GENETIC

PROGRAMMING
This paper focuses on geometric semantic genetic pro-

gramming for symbolic regression problems. Given a finite
set of input-output pairs representing the training cases,
defined as T = {(xi, yi)}

n
i=1—where (xi, yi) ∈ R

d × R

(i = 1, 2, . . . , n)—symbolic regression consists in inducing
a model p : Rd → R that maps inputs to outputs, such that
∀(xi, yi) ∈ T : p(xi) = yi.

In this scenario, let in = [x1,x2, . . . ,xn] and out =
[y1, y2, . . . , yn] be the input and the output vectors, re-
spectively, associated to the training cases. The seman-
tics of a program p represented by an individual evolved by
GSGP, denoted by s(p), is the vector of outputs it produces
when applied to the set of inputs in, i.e., s(p) = p(in) =
[p(x1), p(x2), . . . , p(xn)]. This notation is extended to the
semantics of a population of programs P = {p1, p2, . . . , pk},
i.e., s(P) = {s(p1), s(p2), . . . , s(pk)}. The semantics of any
program can be represented as a point in a n-dimensional
topological space S (called semantic space), where n is the
size of the training set. Notice that the target output (out)
can also be represented in the semantic space.

GSGP introduces geometric semantic operators for GP
that acts on the syntax of the programs, inducing a geomet-
ric behaviour on the semantic level [14]. Let P ′ be the solu-
tion set comprising all the possible candidate solutions to a
problem in the arithmetic domain, the geometric semantic
crossover and mutation operators are defined as follows:

Definition 1. Given two parent functions p1, p2 ∈ P ′, the
geometric semantic arithmetic crossover GSX : P ′×P ′ → P ′

returns the offspring arithmetic function

o = r · p1 + (1− r) · p2 , (1)

where r is a random real constant in [0, 1] (for fitness func-
tion based on Euclidean distance) or a random real function
with codomain [0, 1] (for fitness function based on Manhat-
tan distance).

Definition 2. Given a parent function p ∈ P ′, the geo-
metric semantic arithmetic mutation GSM : P ′ × R

+ → P ′

with mutation step ε returns the real function

o = p+ ε · (r1 − r2) , (2)

where r1 and r2 are random real functions.

Despite the unimodal fitness landscape, the randomness
present in these operators, available in the form of random
real functions or constants, has been shown to be a better
way to explore the space, in terms of generalisation, when
compared to modifications of these operators where the ran-
domness is replaced by decisions based on the training error
[1, 6, 9].

Definition 3. The convex hull of a set S of points in R
n,

denoted as C(S), is the set of all convex combinations of
points in S [17].

GSX is, by definition, a geometric crossover operator [14].
This property lead us to the following theorem regarding the
convex hull of the population1:

Theorem 1. Let Pg be the population at generation g.

For a GSGP, where the GSX operator is the only search

operator available, we have C(s(Pg+1)) ⊆ C(s(Pg)) ⊆ . . . ⊆
C(s(P1)) ⊆ C(s(P0)).

Theorem 1 is a particular case of the Theorem 3 defined
and proved in [13], and has an important implication regard-
ing the GSX operator. Given a population P and a semantic
vector q in S, the offspring resulting from the application of
GSX to any pair of individuals in P can reach q if and only
if q ∈ C(s(P)). Consequently, if GSGP has no other search
operators (only the GSX), a semantic q is reachable only if
q ∈ C(s(P0)), i.e., if q is located inside the convex hull of the
initial population.

Figure 1 illustrates this situation for a bi-dimensional se-
mantic space. Let out = [0, 0] be the desired output vec-
tor defined by the training cases. Now consider two dif-
ferent populations Pc and Ps, where the individuals from
Pc are concentrated in the first quadrant and, consequently,
C(s(Pc)) cannot reach the origin (out). On the other hand,
the set s(Ps) is distributed along the four quadrants and
C(s(Ps)) embraces the desired vector. In the first scenario,
GSGP needs the mutation operator to expand the convex
hull to reach the solution. In the second scenario, as it is al-
ready inside the convex hull, the desired vector can be found
using the crossover operator alone or it can be calculated an-
alytically with no need to use GSGP.

3. RELATED WORK
Previous work on GSGP have proposed different ap-

proaches to take advantage of the properties of the geomet-
ric semantic space to improve search. However, to the best
of our knowledge, so far only one has investigated ways to
increase the area covered by the population convex hull, spe-
cially focusing on the coverage of the initial population, as
discussed in this section.

Regarding operators that take advantage of the conic
shape of the geometric semantic space, in [18] the authors
explore the geometry of the semantic space through the con-
cept of error vector. An error vector is represented by a point
in the n-dimensional space, called error space, given by the
translation te(p) = s(p) − out. This notion is used to in-
troduce the concept of optimally aligned individuals in the
error space, i.e., given a number of dimensions µ = 1, 2, ..., n,
where n is the size of the training set, µ individuals are op-
timally aligned in the error space if they belong to the same
µ-dimensional hyperplane intersecting the origin of the error
space. The authors show that if µ individuals are optimally
aligned, we can analytically obtain an equation to express
the target output vector out. In this context, they present
GP-based methods to find optimally aligned individuals in
two and three dimensions, called ESAGP-1 (Error Space

1Let P be a population of individuals, we adopt the notation
C(s(P)) to denote the convex hull of the set composed by
the semantics of the individuals of P , i.e., s(P).

1

4

2

3

(a) Pc: population concentrated into a single quadrant.

1

4

2

3

(b) Ps: population encompasses solutions in all quadrants.

Figure 1: Different distributions of a population in a bi-dimensional semantic space. The desired output out is located in the
origin of the space and the circled numbers indicate the quadrants.

Alignment GP) and ESAGP-2, respectively. Experimental
results suggest that searching for optimally aligned individ-
uals (in two and three dimensions) is easier than directly
searching for a globally optimal solution.

The authors in [8], in contrast, extend ESAGP-1 to what
they call Pair Optimization GP (POGP). Unlike the original
method, which represents individuals as simple expressions
and computes the fitness by the angle between the error vec-
tor of an individual and a particular point called attractor,
POGP represents individuals as pairs of expressions, and
calculates the fitness as the angle between the error vectors
of these two expressions. POGP experimental results indi-
cate that the method deserves attention in future studies.

Concerning methods taking the area covered by the con-
vex hull, in [16] the authors propose the Competent Initial-
ization (CI) method, which aims to increase the convex hull
of the initial population. The algorithm adopts a general-
ized version of the Semantically Driven Initialization (SDI)
method [3], initially proposed for non-geometric spaces, to
generate individuals semantically distinct. SDI picks a node
randomly from the function set to combine individuals al-
ready in the population. If the resulting program has seman-
tics different from the other members of the population, it
is accepted. Otherwise, the method makes a new attempt of
generating an individual. The process continues until a se-
mantically distinct individual is created, in a trial-and-error
strategy. CI, on the other hand, accepts the semantically
distinct individual only if it is not in the current convex hull.
The main drawback of this method is the possible waste of
resources, since individuals are randomly created, evaluated
and discarded when they are semantically similar to an ex-
isting member of the population or when it is already in the
population’s convex hull.

Although not taking advantage of the geometric prop-
erties of the search space, in [7] the authors propose a
semantic-based algorithm that keeps a distribution of differ-
ent semantics during the evolution to drive GP to search in
areas of the semantic space where previous good solutions
were found. The method outperformed standard GP and
bacterial GP [4] in the test bed adopted. However, the in-
dividuals generated presented statistically bigger sizes than
the individuals generated by the other two GP variants.

In contrast with the aforementioned works, the geometric
dispersion operator proposed here has a different rationale:
to improve the distribution of the points around the target

point, extending the convex hull of the current population.

4. THE GEOMETRIC DISPERSION

OPERATOR
This section introduces the geometric dispersion (GD) op-

erator. It takes as input a single individual p and moves it
in the semantic space in order to better distribute the pop-
ulation around the desired output in each dimension of S.
By distributing the individuals around the desired output
we increase the chances of generating a convex hull from the
population semantics space that contains the desired output
vector out (see Figure 1b).

The aim of GD is to move p to the region of the semantic
space around out with the lowest concentration of individu-
als. In order to find this region, the population distribution
in the semantic space is measured. The operator calculates
the proportion of individuals in each side of out for each di-
mension of S, i.e., the proportion of individuals greater and
smaller than out in each dimension of the semantic space.

Knowing the region of the semantic space around out

where we want to have individuals shifted to, different meth-
ods can be used to move individual p. GD does that by
adding a multiplicative factor (m) to p, in the form m · p.
Note that, by definition, the movement performed by GD
is limited to the line crossing both the origin and individ-
ual p in the semantic space (see Figure 2a). The problem is
then to find the value of m that maximizes the number of
dimensions benefited by the displacement of p.
Let countgt and countlt be n-dimensional arrays, where

the value in position i corresponds to the number of indi-
viduals from P greater and smaller than out in dimension
i, respectively. The GD operator moves p in a way that if
countlt[i] < countgt[i]—there is a concentration of individ-
uals on the right side of out in dimension i—GD moves p in
dimension i to the left side of out. When the concentration
of individuals in dimension i is on the left side of out, GD
has the opposite effect—it moves p in dimension i to the
right side of out. However, given that the operator can only
move p in a straight line, there is no guarantee of achieving
this behaviour for all dimensions.

Given this limitation, the GD operator builds a system of
linear inequalities that reflects the desired behaviour of the
operator and finds the value of m that maximizes the num-
ber of inequalities satisfied, i.e., the number of dimensions

(a) GD line in the semantic space crossing
s(p) and the origin.

3

5

3 5

(b) Distribution of individuals around
out regarding dimension1 (blue) and
dimension2 (red). The numbers indicate
the frequency of individuals on each side
of out for each dimension.

4

4

4

4

(c) GD moves individual p along the line
to a new position, balancing individual
distribution in both dimensions.

Figure 2: The GD operator finds a multiplier m that moves the individual along a line connecting it to the origin to a different
point in space.

that will be redistributed. The system of inequalities is of
the form

m · s(p)[1] ≶1 out[1]

m · s(p)[2] ≶2 out[2]

...

m · s(p)[k] ≶k out[k]

, (3)

where ‘≶i’ is replaced by ‘<’ or ‘>’ depending on which side
of out the individuals are concentrated for dimension i.

Given the system, we can isolate m in each inequality in
the form

m ≶i

out[i]

s(p)[i]
, (4)

and find the value of m that maximizes the number of in-
equalities satisfied. The value in the right side defines an
upper or lower bound for m if ‘≶i’ is a ‘<’ or ‘>’, respec-
tively. Figure 2 presents the GD operator in action. Initially
the individuals are distributed unequally in both dimensions
(showed by the number in the coloured rectangles in Figure
2b). After the operator is applied to individual p, it is moved
to a position that balances the distribution of individuals in
both dimensions (Figure 2c).

Algorithm 1 presents the procedure to build the system
of inequalities. Given the arrays countgt and countlt, it
iterates through the dimensions calculating the inequalities.
The method isolates m (line 4) and stores the right side of
the inequality along with its type (‘lb’ and ‘ub’ for lower and
upper bounds, respectively) in the set B (lines 5-14). Notice
that when s(p)[i] < 0, we have to invert the inequality sign
when m is isolated.

The next step corresponds to computing the value of m
that satisfies the maximum number of inequalities, given its
lower and upper bounds, presented in Algorithm 2. The
procedure first sorts B by value in ascending order. The
auxiliary variables maxSatisfied, index and cSatisfied store
the number of inequalities satisfied by the best bound for m
found so far, its index and the number of inequalities satis-
fied by the bound examined in the current iteration, respec-
tively. The method starts by considering the interval before
the first bound, i.e., (−∞, B[1].value). If a value from this

interval is picked for m, all the upper bounds are satisfied,
i.e., maxSatisfied = nub (line 2). It then iterates over B

counting the number of upper and lower bounds satisfied by
each interval (B[i],∞) (lines 5-13). If the examined value
corresponds to an upper bound, we decrement the cSatisfied
counter, since the interval in the right side of the bound does
not satisfy it. On the other hand, if the examined value cor-
responds to a lower bound, the right side interval satisfies
the bound and cSatisfied is incremented.

After finding the best interval for m, the procedure as-
signs an actual value for m (lines 14-24). If the best inter-
val corresponds to (−∞, B[1]), m takes the value of B[1]
subtracted by one2. If the best interval corresponds to
(B[|B|],∞), m takes one added to the value of B[|B|]. Oth-
erwise, the method selects a random value in the interval
(B[index], B[index+1]). The value of m returned by Algo-
rithm 2 is then used to move individual p in the semantic
space. GD is applied during the evolution at every genera-
tion, right before other genetic semantic operators (crossover
and mutation).

Notice that the process of finding the set of inequali-
ties satisfied by m is deterministic. The only stochastic
part of the method is the selection of a value between two
bounds (line 24). This fact justifies the use of other opera-
tors (crossover and mutation) in order to further explore the
search space. Although the location of the optimal solution
is known, making decisions based only on the distance to
the solution (equivalent to the training error) may lead to
overfitting, as presented in other works [1, 6, 9].

The time complexity of the operator is O(n log n), where
n is the number of the training cases, bounded by the sort
method applied in line 4 of Algorithm 2 (we adopted merge
sort). The construction of the arrays countlt and countgt
occurs once per generation with time O(n|P |), where |P | is
the population size.

5. EXPERIMENTAL ANALYSIS
In this section we present an experimental analysis of the

geometric dispersion operator within the GSGP in a diver-

2Although we shift the value ofm by one, any other constant
could be adopted.

Algorithm 1: Build System of Inequalities

Input: Individual program (p), desired output (out),
population distribution (countgt, countlt)

Output: Set of bounds for m (B)
1 B ← {};
2 for i← 1 to |s(p)| do // Calculate the bounds

3 if s(p)[i] 6= 0 then

4 value← out[i]
s(p)[i]

;

5 if countgt[i] > countlt[i] then
6 if s(p)[i] > 0 then

7 B ← B ∪ (value, ‘ub’);
8 else

9 B ← B ∪ (value, ‘lb’);

10 if countgt[i] < countlt[i] then
11 if s(p)[i] > 0 then

12 B ← B ∪ (value, ‘lb’);
13 else

14 B ← B ∪ (value, ‘ub’);

15 return B;

sified collection of real-world and synthetic datasets. The
results obtained by GSGP with the GD operator, from now
on referred as GSGP+, are compared with a canonical GP
[2] and the GSGP without the use of the operator [5].

The experimental test bed, presented in Table 1, is com-
posed of datasets selected from the UCI machine learning
repository [12] and GP benchmarks [21]. For each real-
world dataset, we performed a 5-fold cross-validation with
10 replications, resulting in 50 executions. For the synthetic
datasets (except keijzer-6 and keijzer-7), we generated 5
samples and, for each sample, applied the algorithms 10
times, resulting again in 50 executions. For keijzer-6 and
keijzer-7, the test set is fixed, so we performed 50 execu-
tions. The categorical attributes, namely ‘vendor name’ and
‘model name’ from the cpu dataset and ‘month’ and ‘day’
from the forestFires dataset, were removed for compatibility
purposes.

All executions used a population of 1000 individuals
evolved for 2000 generations with tournament selection of
size 10. The grow method [11] was adopted to gener-
ate the random functions inside the geometric semantic
crossover and mutation operators, and the ramped half-and-
half method [11] used to generate the initial population, both
with maximum individual depth equals to 6. The function
set included three binary arithmetic operators (+,−,×) and
the analytic quotient (AQ) [15] as an alternative to the arith-
metic division. The terminal set included the variables of
the problem and constant values randomly picked from the
interval [−1, 1]. The GP method employed the canonical
crossover and mutation operators [11] with probabilities 0.9
and 0.1, respectively. GSGP employed the geometric se-
mantic crossover for fitness function based on Manhattan
distance and mutation operators, as presented in [5], both
with probability 0.5.

The differences in the probabilities of applying the muta-
tion and crossover operators in GP and GSGP/GSGP+ are
justified based on previous work. While GP typically applies
mutation with probability much smaller than the crossover
[2], GSGP adopts relatively high mutation rate in order to

Algorithm 2: Finds m

Input: Set of bounds for m given by Alg. 1 (B)
Output: Individual multiplier (m)

1 nub ← number of ‘ub’ s in B;
2 maxSatisfied ← cSatisfied ← nub;
3 index ← 0;
4 Sort B by value in ascending order;
5 for i← 1 to |B| do // Find best interval for m

6 bound ← B[i];
7 if bound.type = ‘lb’ then

8 cSatisfied ← cSatisfied+ 1 ;
9 if cSatisfied > maxSatisfied then

10 maxSatisfied ← cSatisfied ;
11 index ← i;

12 else

13 cSatisfied ← cSatisfied− 1 ;

14 if index = 0 then // Calculate m

15 if B is empty then // No need to move p

16 m← 1;
17 else

18 m← B[1].value− 1 ; // Shift by one

19 else

20 if index = |B| then
21 m← B[|B|].value+ 1 ; // Shift by one

22 else

23 δ ← B[index+ 1].value−B[index].value;
// rnd() returns a random value in (0, 1)

24 m← B[index].value+ δ · rnd();

25 return m;

be able to effectively explore the search space [20].

5.1 Parameter tuning
As we are interested in understanding the impact of the

GD operator, we fix the other GSGP parameters and focus
on looking at the results as we varied the probability values
of GD. Note that the proposed operator cannot be used in
isolation or without the mutation operator (i.e. only with
crossover). This is because GD works with the restriction
that individuals have to be moved along the line that crosses
the desired output and the individual to be moved. As indi-
viduals movements are restricted to this line, it can stagnate
the search. Hence, mutation still plays an important role
when GD is applied, while GD main advantage is its abil-
ity to move individuals in the semantic space to enhance the
convex hull generated by the population. For this reason, all
experiments reported in this paper use GD, crossover and
mutation operators with their respective probabilities.

One thing we realized during preliminary experiments
was that moving individuals around the semantic spaces in
the initial generations has a high positive impact in search.
However, this behaviour is not maintained during the whole
evolutionary process, leading to negative or no effects in
later generations. Results of these experiments are omitted
due to space constraints. For this reason, we proposed to
dynamically adjust the probability pgd of applying GD as
follows:

Table 1: Median training RMSE of the GSGP+ with different values of α and pgd0 for the adopted test bed. The smallest
RMSE for each dataset is presented in bold.

Dataset
pgd0 = 0.2 pgd0 = 0.4 pgd0 = 0.6

α = 0 α = 2 α = 5 α = 10 α = 0 α = 2 α = 5 α = 10 α = 0 α = 2 α = 5 α = 10

airfoil∗ 1.5180 1.4754 1.4517 1.4600 1.6117 1.4912 1.4566 1.4566 1.8437 1.5306 1.4715 1.4654

bioavailability∗ 1.3029 1.1031 1.0323 1.0464 1.8538 1.1723 1.0593 1.0241 3.1383 1.3819 1.0892 1.0352

concrete∗ 2.8193 2.7705 2.7500 2.7460 2.9370 2.7824 2.7503 2.7462 3.0971 2.8285 2.7881 2.7319
cpu∗ 1.1506 0.9829 1.0197 1.0358 1.2904 1.1042 1.0083 0.9685 1.4872 1.2693 1.0930 1.0863

energyCooling∗ 1.0632 1.0203 0.9966 0.9995 1.1199 1.0520 1.0036 0.9853 1.2435 1.0769 1.0301 1.0086

energyHeating∗ 0.7577 0.7216 0.7329 0.7025 0.8191 0.7710 0.7440 0.7299 0.9325 0.8011 0.7448 0.7374

forestFires∗ 3.4611 3.4065 3.1822 3.2245 3.9684 3.5108 3.3149 3.1620 4.4722 3.5889 3.3112 3.2421

keijzer-5† 0.0481 0.0461 0.0447 0.0449 0.0430 0.0447 0.0443 0.0431 0.0261 0.0262 0.0311 0.0347

keijzer-6† 0.0067 0.0072 0.0069 0.0071 0.0092 0.0091 0.0097 0.0090 0.0095 0.0097 0.0086 0.0101

keijzer-7† 0.0166 0.0173 0.0162 0.0166 0.0195 0.0177 0.0192 0.0194 0.0178 0.0189 0.0173 0.0171

ppb∗ 0.0043 0.0033 0.0028 0.0029 0.0070 0.0041 0.0030 0.0028 0.0045 0.0055 0.0036 0.0030

towerData∗ 19.1502 18.6724 18.5735 18.3659 20.4999 19.1012 18.7814 18.6049 22.1271 19.7742 18.9411 18.6882

vladislavleva-1† 0.0122 0.0119 0.0118 0.0116 0.0128 0.0122 0.0120 0.0119 0.0148 0.0121 0.0118 0.0116

vladislavleva-4† 0.0401 0.0387 0.0383 0.0376 0.0428 0.0396 0.0386 0.0380 0.0476 0.0404 0.0389 0.0386

wineRed∗ 0.3397 0.3259 0.3217 0.3192 0.3731 0.3375 0.3265 0.3222 0.4225 0.3498 0.3296 0.3234

wineWhite∗ 0.5469 0.5388 0.5346 0.5332 0.5669 0.5447 0.5377 0.5350 0.5938 0.5533 0.5406 0.5363

∗ Real-world dataset † Synthetic dataset

pgdg = pgd0 · exp

(

−α · g

gmax

)

, (5)

where pgd0 is the base probability, α is the decay rate, g is
current generation index and gmax is total number of gener-
ations. Equation 5 ensures the probability of applying the
operator decays exponentially with the generations.

We tested the application of GD with different initial
probabilities, and here we show the best results, which were
obtained by setting pgd0 to 0.2, 0.4 and 0.6. For these three
values, we vary the parameter α from Equation 5, which
defines the decay rate of pgd0 along the generations. Note
that when α equals to 0, the decay function is not used, and
pgd0 becomes constant along the generations.

Table 1 presents the results of root mean squared error
(RMSE) for different combinations of pgd0 and α in the
training set. The results show that lower values for pgd0
(0.2, 0.4), allied with higher α values (10) tend to reduce the
training RMSE. This fact indicates the application of the
GD operator with low probability only in the early gener-
ations can reduce the training RMSE in relation to other
combination of values.

5.2 Experimental Results
After parameter tuning, GSGP+ was evaluated consider-

ing three metrics: (i) the RMSE when compared to GSGP
and GP; (ii) the distribution of the individuals along the di-
mensions of the semantic space; and (iii) the execution time.
We start by discussing the results of error. Table 2 presents
the median RMSE and IQR (Interquartile Range) in the
training and test sets, according to 50 executions. GSGP+

results considered in this analysis were obtained with the
values of α and pgd0 generating the smallest median train-
ing RMSE in each of the datasets, presented in bold in Table
1. When analysing the differences between the median test
and training RMSE’s of GSGP+ and GSGP, we observe that
both present similar generalization power, with a small in-
crease on the test error when compared to the training error.

We adopted the less conservative variant of the Friedman
test proposed by Iman and Davenport [10], here called ad-
justed Friedman test, to analyse the statistical difference of
the results. We performed an adjusted Friedman test under

the null hypothesis that the performance of the methods—
measured by their median test RMSE—are equal, obtaining
the p-value 1.68×10−5, which implies in discarding the null
hypothesis with a confidence level of 95%.

As the null hypothesis was discarded, a Finner post hoc
test was carried out with a confidence level of 95% in order
to compute the adjusted p-value regarding the probability
of the performance of GSGP+ differs from each one of the
other methods. The average ranks calculated for the statis-
tical tests and the adjusted p-values (APV) resulting from
the Finner test are presented in the last two rows of the
Table 2, respectively. Given that the GSGP+ obtained the
smaller average rank among the three methods along with
the APV’s obtained by comparing it to the other methods,
lead us to conclude that, with a confidence level of 95%,
GSGP+ performs better in terms of median test RMSE than
the other methods.

The second aspect we evaluate is whether GD actually
improves the distribution of the population around the de-
sired output out or not. For that, we propose a new mea-
sure, called mean dimension distribution (MDD). For each
dimension d of the training set, it is defined as

mdd(P, d) = abs

1

|P |

|P |
∑

i=1

ge(s(pi)[d], out[d])− 0.5

 , (6)

where P is the population, |P | is the population size, pi is
its i-th individual, ge(a, b) returns 1 if a ≥ b and 0 otherwise
and abs(a) returns the absolute value of a. MDD is defined
in the [0, 0.5] interval. A mdd(P, d) = 0 means that P is
evenly distributed in dimension d, i.e., half the individuals
are greater than or equal to and half are smaller than out in
dimension d, while mdd(P, d) = 0.5 means the population
is badly distributed, i.e., all individuals are greater than or
equal to out and none is smaller than out in the dimension
d or vice-versa.

Figure 3a shows an analysis of the MDD throughout the
generations for dataset bioavailability using a heatmap. We
reported the mean of the values resulting from ten repli-
cations of the first fold adopted in the test bed, using the
best parameter combination from Section 5.1. The values in

Table 2: Training and test RMSE’s (median and IQR) obtained by the algorithms for each dataset.

Dataset
GSGP+ GSGP GP

Training Test Training Test Training Test
Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR

airfoil 1.886 0.041 2.131 0.243 7.885 0.527 8.417 0.757 6.389 6.004 5.959 5.972

bioavailability 9.695 0.690 30.860 4.426 9.885 0.689 30.969 2.507 34.364 4.971 35.404 7.387

concrete 3.654 0.118 5.144 0.635 3.647 0.138 5.394 0.642 8.330 1.152 8.534 1.044

cpu 6.151 0.905 30.837 14.563 6.126 0.665 30.917 15.185 24.809 4.777 34.664 14.756

energyCooling 1.271 0.066 1.531 0.159 1.257 0.070 1.515 0.147 3.201 0.204 3.242 0.242

energyHeating 0.798 0.083 0.971 0.128 0.802 0.113 0.956 0.185 2.875 0.127 2.818 0.403

forestfires 30.967 4.201 50.227 48.373 30.737 4.626 51.632 48.166 36.671 13.406 59.572 59.438

keijzer-5 0.026 0.008 0.028 0.009 0.045 0.003 0.049 0.005 0.015 0.006 0.016 0.005

keijzer-6 0.007 0.006 0.281 0.282 0.007 0.005 0.398 0.339 0.025 0.021 0.271 0.217

keijzer-7 0.016 0.009 0.017 0.009 0.017 0.010 0.018 0.010 0.035 0.023 0.035 0.021

ppb 0.954 0.305 28.568 6.170 0.917 0.266 28.740 5.290 27.082 1.523 29.202 5.596

towerData 20.405 0.621 21.769 1.252 20.436 0.610 21.920 1.272 57.783 5.272 58.397 5.155

vladislavleva-1 0.012 0.002 0.044 0.030 0.012 0.002 0.044 0.030 0.026 0.012 0.073 0.023

vladislavleva-4 0.038 0.001 0.051 0.004 0.038 0.001 0.052 0.003 0.169 0.011 0.170 0.011

wineRed 0.494 0.011 0.615 0.046 0.493 0.011 0.620 0.040 0.659 0.016 0.653 0.048

wineWhite 0.642 0.003 0.696 0.015 0.641 0.003 0.696 0.014 0.750 0.008 0.754 0.022

Avg. rank∗ 1.250 2.063 2.688

Finner APV∗ — 0.0216 0.0001
∗ Regarding the median test RMSE

Table 3: Median elapsed time (in seconds) of the GSGP and
GSGP+. All differences are statistically significant accord-
ing to a Wilcoxon test with a confidence level of 95%.

Dataset GSGP+ GSGP Difference (%)

airfoil 1708.3 1523.9 12.10

bioavailability 421.0 387.6 8.62

concrete 1229.7 1195.0 2.90

cpu 327.4 313.4 4.48

energyCooling 852.9 801.1 6.47

energyHeating 826.8 782.3 5.70

forestfires 585.5 555.8 5.34

keijzer-5 10579.3 9287.9 13.90

keijzer-6 234.0 224.5 4.23

keijzer-7 1021.2 995.1 2.62

ppb 215.4 203.4 5.92

towerData 5357.9 4997.3 7.22

vladislavleva-1 1847.4 1870.3 -1.23

vladislavleva-4 5344.2 5074.2 5.32

wineRed 1597.2 1447.7 10.33

wineWhite 4690.9 4339.7 8.09

each cell correspond to the difference between the MDD ob-
tained by the GSGP+ and GSGP, i.e., values close to −0.5
indicate the dimension is better distributed in the GSGP+,
values close to 0.5 indicate the opposite and values close to
0 indicate similar behaviour. The x axis corresponds to the
number of generations (only values multiple of 10 are consid-
ered), and the y axis represents different training cases (i.e.,
all dimensions of the semantic space). As expected, GSGP+

population is better distributed than the GSGP population
in the initial generations (blue region in the left side). How-
ever, this behaviour does not persist along the evolution,
given the decaying probability of the GD. After 250 genera-
tions, approximately, both methods present a similar MDD,
denoted by the high concentration of green in the remainder
of the heatmap.

Figures 3b and 3c show the evolution of the fitness of the
best individual along the generations in the training and test
sets for GSGP and GSGP+, respectively. Note that, at the
begining of the generations, when the probability of applying
the GD operator is higher, the error in the training set drops
quicker for GSGP+ than GSGP. However, as the operator

becomes less applied, the curve from GSGP approximates
quickly. Something similar happens for the test set, but
note that from generation 700 on the error starts to grow.
However, GSGP errors are overall higher than GSGP+.
The third point to be analysed is the impact of the opera-

tor on the execution time of GSGP. Table 3 presents the time
elapsed during the execution of GSGP+ and GSGP, consid-
ering both training and test stages. Except for vladislavleva-
1, the use of GD increases the execution time of the GSGP
from 2.62% to 13.9%, depending on the dataset. The trade-
off between the improvement on RMSE and the increase on
computational time needs to be further analysed, and more
efficient versions of the operator can be designed.

6. CONCLUSIONS
This paper presented a new operator designed to better

distribute the population around the desired output vector
during the evolutionary process performed by GSGP. The
geometric dispersion (GD) operator moves a given individ-
ual along a line in the semantic space to regions with low
concentration of individuals.

Experiments were performed in a test bed composed of
sixteen datasets from synthetic and real domains. GSGP
with the GD operator was compared to GSGP without it
and a canonical GP in terms of median test RMSE. The
reported results showed GSGP with the GD operator per-
forms significantly better than both methods. We also anal-
ysed the GD impact on the population distribution around
the target output. The analysis showed that the operator
promoted a better distribution of the population around the
desired output in relation to GSGP in the initial generations,
where the probability of applying it was higher.

Potential future developments include investigating the
use of other operations instead of multiplication to move
individuals with the GD operator, and the development
of more sophisticated implementations that might reduce
differences of computational time when it is compared to
GSGP. Furthermore, an analysis of the impact of includ-
ing information about the distribution of the population in
other stages of the evolution, such as in the selection phase,
are worth investigating.

1 50 100 150 200
287

216

144

72

1

Generation (× 10)

In
s
ta

n
c
e

−0.4 −0.2 0 0.2 0.4

Value

Color Key

(a) Heatmap with the differences between
GSGP+ and GSGP according to MDD for
each instance in generations numbers multi-
ple of 10.

0 500 1000 1500 2000

1
0

2
0

3
0

4
0

Generation

M
e
d
ia

n
 t
ra

in
in

g
 R

M
S

E

GSGP
GSGP+

(b) Median RMSE in the training set.

0 500 1000 1500 2000

3
2

3
4

3
6

3
8

4
0

4
2

4
4

Generation

M
e
d
ia

n
 t
e
s
t
R

M
S

E

GSGP
GSGP+

(c) Median RMSE in the test set.

Figure 3: MME Heatmap and evolution of the RMSE over the generations for GSGP+ and GSGP in the dataset bioavailability.

7. ACKNOWLEDGEMENTS
The authors would like to thank CAPES, CNPq

(141985/2015-1) and Fapemig for their financial support.

8. REFERENCES
[1] J. Albinati, G. L. Pappa, F. E. B. Otero, and L. O.

V. B. Oliveira. The effect of distinct geometric
semantic crossover operators in regression problems.
In Proc. of EuroGP, pages 3–15, 2015.

[2] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.
Genetic Programming — an Introduction: on the

Automatic Evolution of Computer Programs and Its

Applications. Morgan Kaufmann Publishers, 1998.

[3] L. Beadle and C. G. Johnson. Semantic analysis of
program initialisation in genetic programming.
Genetic Prog. and Evolvable Machines, 10(3):307–337,
Sep 2009.

[4] J. Botzheim, C. Cabrita, L. T. Kóczy, and A. E.
Ruano. Genetic and bacterial programming for
b-spline neural networks design. Journal of Advanced
Computational Intelligence, 11(2):220–231, 2007.

[5] M. Castelli, S. Silva, and L. Vanneschi. A C++
framework for geometric semantic genetic
programming. Genetic Prog. and Evolvable Machines,
16(1):73–81, Mar 2015.

[6] M. Castelli, L. Trujillo, L. Vanneschi, S. Silva,
E. Z-Flores, and P. Legrand. Geometric semantic
genetic programming with local search. In Proc.

GECCO’15, pages 999–1006. ACM, 2015.

[7] M. Castelli, L. Vanneschi, and S. Silva. Semantic
search-based genetic programming and the effect of
intron deletion. Cybernetics, IEEE Trans. on,
44(1):103–113, Jan 2014.

[8] M. Castelli, L. Vanneschi, S. Silva, and S. Ruberto.
How to exploit alignment in the error space: Two
different GP models. In Genetic Programming Theory

and Practice XII, pages 133–148. 2015.

[9] I. Gonçalves, S. Silva, and C. M. F. Fonseca. On the
generalization ability of geometric semantic genetic
programming. In Proc. of EuroGP, pages 41–52, 2015.

[10] R. L. Iman and J. M. Davenport. Approximations of
the critical region of the Friedman statistic.
Communications in Statistics - Theory and Methods,
9(6):571–595, 1980.

[11] J. R. Koza. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection, volume 1. MIT Press, 1992.

[12] M. Lichman. UCI machine learning repository, 2015.
http://archive.ics.uci.edu/ml.

[13] A. Moraglio. Abstract convex evolutionary search. In
Proc. of the 11th FOGA, pages 151–162, 2011.

[14] A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming. In Proc. of

PPSN XII, volume 7491, pages 21–31. 2012.

[15] J. Ni, R. H. Drieberg, and P. I. Rockett. The use of an
analytic quotient operator in genetic programming.
Evolutionary Computation, IEEE Trans. on,
17(1):146–152, Apr 2013.

[16] T. P. Pawlak. Competent Algorithms for Geometric

Semantic Genetic Programming. PhD thesis, Poznan
University of Technology, Poznan, Poland, 2015.

[17] S. Roman. Advanced linear algebra, volume 135 of
Graduate Texts in Mathematics. Springer New York,
2nd edition, 2005.

[18] S. Ruberto, L. Vanneschi, M. Castelli, and S. Silva.
ESAGP - a semantic GP framework based on
alignment in the error space. In Proc. of EuroGP,
pages 150–161, 2014.

[19] L. Vanneschi, M. Castelli, and S. Silva. A survey of
semantic methods in genetic programming. Genetic

Prog. and Evolvable Machines, 15(2):195–214, 2014.

[20] L. Vanneschi, S. Silva, M. Castelli, and L. Manzoni.
Geometric semantic genetic programming for real life
applications. In R. Riolo et al., editors, Genetic Prog.

Theory and Practice XI, pages 191–209. 2014.

[21] D. White, J. McDermott, M. Castelli, L. Manzoni,
B. Goldman, G. Kronberger, W. Jaśkowski, U. M.
O’Reilly, and S. Luke. Better GP benchmarks:
community survey results and proposals. Genetic

Prog. and Evolvable Machines, 14(1):3–29, Mar 2013.

