945 research outputs found

    Alloying effects on the optical properties of Ge1−x_{1-x}Six_x nanocrystals from TDDFT and comparison with effective-medium theory

    Full text link
    We present the optical spectra of Ge1−x_{1-x}Six_x alloy nanocrystals calculated with time-dependent density-functional theory in the adiabatic local-density ap proximation (TDLDA). The spectra change smoothly as a function of the compositio n xx. On the Ge side of the composition range, the lowest excitations at the ab sorption edge are almost pure Kohn-Sham independent-particle HOMO-LUMO transitio ns, while for higher Si contents strong mixing of transitions is found. Within T DLDA the first peak is slightly higher in energy than in earlier independent-par ticle calculations. However, the absorption onset and in particular its composit ion dependence is similar to independent-particle results. Moreover, classical depolarization effects are responsible for a very strong suppression of the abs orption intensity. We show that they can be taken into account in a simpler way using Maxwell-Garnett classical effective-medium theory. Emission spectra are in vestigated by calculating the absorption of excited nanocrystals at their relaxe d geometry. The structural contribution to the Stokes shift is about 0.5 eV. Th e decomposition of the emission spectra in terms of independent-particle transit ions is similar to what is found for absorption. For the emission, very weak tra nsitions are found in Ge-rich clusters well below the strong absorption onset.Comment: submitted to Phys. Rev.

    Troubleshooting Time-Dependent Density-Functional Theory for Photochemical Applications: Oxirane

    Get PDF
    The development of analytic-gradient methodology for excited states within conventional time-dependent density-functional theory (TDDFT) would seem to offer a relatively inexpensive alternative to better established quantum-chemical approaches for the modeling of photochemical reactions. However, even though TDDFT is formally exact, practical calculations involve the use of approximate functionals, in particular the TDDFT adiabatic approximation, whose use in photochemical applications must be further validated. Here, we investigate the prototypical case of the symmetric CC ring opening of oxirane. We demonstrate by direct comparison with the results of high-quality quantum Monte Carlo calculations that, far from being an approximation on TDDFT, the Tamm-Dancoff approximation (TDA) is a practical necessity for avoiding triplet instabilities and singlet near instabilities, thus helping maintain energetically reasonable excited-state potential energy surfaces during bond breaking. Other difficulties one would encounter in modeling oxirane photodynamics are pointed out but none of these is likely to prevent a qualitatively correct TDDFT/TDA description of photochemistry in this prototypical molecule.Comment: 19 pages, 17 figures, submitted to the Journal of Chemical Physic

    A joint time-dependent density-functional theory for excited states of electronic systems in solution

    Full text link
    We present a novel joint time-dependent density-functional theory for the description of solute-solvent systems in time-dependent external potentials. Starting with the exact quantum-mechanical action functional for both electrons and nuclei, we systematically eliminate solvent degrees of freedom and thus arrive at coarse-grained action functionals which retain the highly accurate \emph{ab initio} description for the solute and are, in principle, exact. This procedure allows us to examine approximations underlying popular embedding theories for excited states. Finally, we introduce a novel approximate action functional for the solute-water system and compute the solvato-chromic shift of the lowest singlet excited state of formaldehyde in aqueous solution, which is in good agreement with experimental findings.Comment: 11 page

    A new and efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy

    Full text link
    Using a super-operator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is given a matrix continued-fraction representation whose coefficients can be obtained from the non-symmetric block-Lanczos method. The resulting algorithm allows for the calculation of the {\em full spectrum} of a system with a computational workload which is only a few times larger than that needed for {\em static} polarizabilities within time-independent density-functional perturbation theory. The method is demonstrated with the calculation of the spectrum of benzene, and prospects for its application to the large-scale calculation of optical spectra are discussed.Comment: 4 pages, 2 figure

    Rydberg transition frequencies from the Local Density Approximation

    Full text link
    A method is given that extracts accurate Rydberg excitations from LDA density functional calculations, despite the short-ranged potential. For the case of He and Ne, the asymptotic quantum defects predicted by LDA are in less than 5% error, yielding transition frequency errors of less than 0.1eV.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Investigating interaction-induced chaos using time-dependent density functional theory

    Full text link
    Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum mechanics. We investigate the possibility of using time-dependent density functional theory (TDDFT) to study the case when chaos is induced by electron-interaction alone. Nearest-neighbour level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how the TDDFT linear response procedure can reveal the mechanism of chaos induced by electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond the adiabatic approximation in TDDFT.Comment: 8 pages, 4 figure

    Exchange and Correlation Kernels at the Resonance Frequency -- Implications for Excitation Energies in Density-Functional Theory

    Full text link
    Specific matrix elements of exchange and correlation kernels in time-dependent density-functional theory are computed. The knowledge of these matrix elements not only constraints approximate time-dependent functionals, but also allows to link different practical approaches to excited states, either based on density-functional theory, or on many-body perturbation theory, despite the approximations that have been performed to derive them.Comment: Submitted to Phys. Rev. Lett. (February 4, 1999). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Optical excitations in organic molecules, clusters and defects studied by first-principles Green's function methods

    Full text link
    Spectroscopic and optical properties of nanosystems and point defects are discussed within the framework of Green's function methods. We use an approach based on evaluating the self-energy in the so-called GW approximation and solving the Bethe-Salpeter equation in the space of single-particle transitions. Plasmon-pole models or numerical energy integration, which have been used in most of the previous GW calculations, are not used. Fourier transforms of the dielectric function are also avoided. This approach is applied to benzene, naphthalene, passivated silicon clusters (containing more than one hundred atoms), and the F center in LiCl. In the latter, excitonic effects and the 1s→2p1s \to 2p defect line are identified in the energy-resolved dielectric function. We also compare optical spectra obtained by solving the Bethe-Salpeter equation and by using time-dependent density functional theory in the local, adiabatic approximation. From this comparison, we conclude that both methods give similar predictions for optical excitations in benzene and naphthalene, but they differ in the spectra of small silicon clusters. As cluster size increases, both methods predict very low cross section for photoabsorption in the optical and near ultra-violet ranges. For the larger clusters, the computed cross section shows a slow increase as function of photon frequency. Ionization potentials and electron affinities of molecules and clusters are also calculated.Comment: 9 figures, 5 tables, to appear in Phys. Rev. B, 200
    • …
    corecore