We present a novel joint time-dependent density-functional theory for the
description of solute-solvent systems in time-dependent external potentials.
Starting with the exact quantum-mechanical action functional for both electrons
and nuclei, we systematically eliminate solvent degrees of freedom and thus
arrive at coarse-grained action functionals which retain the highly accurate
\emph{ab initio} description for the solute and are, in principle, exact. This
procedure allows us to examine approximations underlying popular embedding
theories for excited states. Finally, we introduce a novel approximate action
functional for the solute-water system and compute the solvato-chromic shift of
the lowest singlet excited state of formaldehyde in aqueous solution, which is
in good agreement with experimental findings.Comment: 11 page