9 research outputs found

    Purification, characterization and structural determination of UDP-N-acetylglucosamine pyrophosphorylase produced by Moniliophthora perniciosa

    Get PDF
    The enzyme UDP-N-acetylglucosamine pyrophosphorylase (PyroMp) from Moniliophthora perniciosa (CCMB 0257), a pathogenic fungal strain and the causative agent of the witches' broom disease in Theobroma cacao, was partially purified by precipitation with ammonium sulfate and gel filtration on Sephacryl S-200. The buffer for enzyme extraction was sodium phosphate, 0.050 mol L-1, pH 7.0, containing 1.0 mol L-1 NaCl. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes (PyroMp I, PyroMp II, PyroMp III and PyroMp IV) were obtained with optimal pH ranging from 6.9-8.4 and optimum temperature ranging from 28 to 68 °C. The 3D structure of pyrophosphorylase of M. perniciosa was determined by comparative modeling. The model obtained showed a good quality, possessing 78.6% of amino acids in energetically allowed regions. The model was then submitted for DM simulation and showed a good geometric quality (91.1% Ramachandran plot). The active site of the enzyme was found to be extremely well conserved. This model will be useful for developing new inhibitors against witches' broom disease22610151023CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DA BAHIA - FAPESBFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãoA enzima UDP-N-acetilglicosamina pirofosforilase de Moniliophthora perniciosa (CCMB 0257), o fungo patogênico causador da doença vassoura-de-bruxa do Theobroma cacao, foi parcialmente purificada por precipitação com sulfato de amônio e cromatografia de gel filtração em Sephacryl S-200. O tampão de extração da enzima foi o fosfato de sódio, 0,050 mol L-1, pH 7,0, contendo 1,0 mol L-1 de NaCl. A metodologia de superfície de resposta (MSR) foi usada para a obtenção do pH e temperatura ótima. Os resultados mostraram quatro diferentes isoenzimas (PyroMp I, PyroMp II, PyroMp III e PyroMp IV) que apresentaram pH ótimo na faixa de 6,9-8,4 e temperatura ótima variando entre 28 a 68 °C. A estrutura 3D de pirofosforilase de M. perniciosa foi obtida por modelagem comparativa. O modelo obtido mostrou uma boa qualidade, possuindo 78,6% de aminoácidos nas regiões energeticamente favoráveis. O modelo foi então submetido a simulações de dinâmica molecular (DM). O modelo apresentou uma boa qualidade geométrica após as simulações de DM (91,1% -gráfico de Ramachandran). A procura pelo sítio ativo da enzima mostrou que este é mantido extremamente conservado. Este modelo pode ser útil para desenvolvimento de inibidores contra a doença vassoura de brux

    A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basidiomycete fungus <it>Moniliophthora perniciosa </it>is the causal agent of Witches' Broom Disease (WBD) in cacao (<it>Theobroma cacao</it>). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. <it>M. perniciosa</it>, together with the related species <it>M. roreri</it>, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9× coverage) of <it>M. perniciosa </it>was analyzed to evaluate the overall gene content of this phytopathogen.</p> <p>Results</p> <p>Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that <it>M. perniciosa </it>has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that <it>M. perniciosa </it>have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in <it>M. perniciosa </it>genome survey.</p> <p>Conclusion</p> <p>This genome survey gives an overview of the <it>M. perniciosa </it>genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the <it>M. perniciosa</it>/cacao pathosystem.</p

    A new topology of ACBP from Moniliophthora perniciosa

    No full text
    Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein`s structure was determined at 1.6 angstrom resolution and revealed a new topology for ACBP, containing five a-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening. (C) 2009 Elsevier B.V. All rights reserved.FAPESB[1431080017116]FINEP[01.07.0074-00

    In Vitro Production Of Biotrophic-like Cultures Of Crinipellis Perniciosa, The Causal Agent Of Witches' Broom Disease Of Theobroma Cacao.

    No full text
    Witches' broom disease (WBD) of cacao, caused by the hemibiotrophic fungus, Crinipellis perniciosa, exhibits a succession of symptoms that are caused by the biotrophic phase of the fungus. However, the study of this biotrophic phase is limited by its exclusive growth inside the plant or in the presence of callus. Here we report for the first time a method for the growth and maintenance of the biotrophic-like phase of C. perniciosa on a defined medium with metabolites found in the diseased tissues. Our results suggest that glycerol is a key carbon source for this interaction. This is a crucial achievement toward understanding the biology of this fungus during the infectious phase of WBD.52191-

    Genome-Wide Analysis of Differentially Expressed Genes During the Early Stages of Tomato Infection by a Potyvirus

    Get PDF
    Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed

    Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa

    No full text
    Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus217891908CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP471609/2003-02002/09280-1; 2005/60432-

    Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches` broom pathogen Moniliophthora perniciosa

    No full text
    Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus

    The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid

    No full text
    We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches` Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688. (c) 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.CNPqCapesCNPq Regional Genoma ProgramSEAGRImFAPESP[02/09280-1

    The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid

    No full text
    We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches' Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109103 base pairs, with 31.9 % GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY3766881121011361152CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação02/09280-
    corecore