275 research outputs found

    Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success

    Get PDF
    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary

    High precision spectra at large redshift for dynamical DE cosmologies

    Full text link
    The next generation mass probes will investigate DE nature by measuring non-linear power spectra at various z, and comparing them with high precision simulations. Producing a complete set of them, taking into account baryon physics and for any DE state equation w(z), would really be numerically expensive. Regularities reducing such duty are essential. This paper presents further n-body tests of a relation we found, linking models with DE state parameter w(z) to const.-w models, and also tests the relation in hydro simulations.Comment: PASCOS 2010, the 16th International Symposium on Particles, Strings and Cosmology, Valencia (Spain), July 19th - 23rd, 201

    Tomographic weak lensing shear spectra from large N-body and hydrodynamical simulations

    Full text link
    Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been biased on algorithms yielding the expected linear and non-linear spectrum of density fluctuations. Even when simulations have been used, so-called Halofit (Smith et al 2003) predictions on fairly large scales have been needed. We wish to go beyond this limitation. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-l harmonics of the cosmic shear (up to l ~ 50000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. We compare our outputs with those obtainable using approximate expressions for non--linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results taht are fully independent of any approximate expression, also in the high-l range, where we need to incorporate a non-linear power spectrum of density perturbations, and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high--sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements.Comment: 13 pages, 19 figures, A&A in pres

    Thin-shell gravastar in a noncommutative BTZ geometry

    Full text link
    In this paper, we build a thin-shell gravastar model within a noncommutative BTZ geometry. For this, we consider a noncommutative BTZ metric in the inner region and a geometry associated with a BTZ solution in the outer region, joined by the generalized join technique. After investigating the inner spacetime, surface and outer spacetime, we observe that there is a surface energy density and surface pressure, such as to make gravastar stable. This effect persists even when the cosmological constant is zero. Besides, we found a bound for the noncommutativity parameter. In addition, we examine the thermodynamics of the noncommutative BTZ black hole in Schwarzschildtype form in three-dimensional spacetime. We also check the stability condition by calculating the specific heat capacity.Comment: 12, 6 figure

    Conformational Assignement, Absolute Configuration and Chiral Separation of all the Stereoisomers Created by the Combined Presence of Stereogenic Centers and Stereogenic Conformational Axes in a Highly Hindered 1,5-Naphthyl Sulfoxide.

    Get PDF
    The presence of two stereogenic centers and of two stereogenic conformational axes in 2,6-dimethyl-1,5-bis(2-methyl-2-propylsulfinyl)naphthalene (1) entails the existence of 10 stereoisomers. In particular, both the meso form (1a) and the racemic form (1b) are constituted by three atropisomers; in the case of the latter (1b) each of them entails a pair of enantiomers (total of six species), whereas owing to the symmetry only one of the three atropisomers of the meso form (1a) yields a pair of enantiomers (a total of four species). Despite the low conformational interconversion barrier (18.5 kcal/mol) all of them have been separated by low temperature (-45°C) chiral HPLC. Their configurational and conformational assignment has been achieved by a combined use of NMR (both in solution and solid state) and on-line CD-detected chiral HPLC. The single crystal X-ray diffraction yielded the absolute configuration of one of the stereoisomers ((ZR,ER)-1b) from which all the others could be obtained by CD relationship

    Spontaneous and iatrogenic ovarian hyperstimulation syndrome in the absence of FSHR mutations: a case report of two unexpected cases

    Get PDF
    Background: Ovarian hyperstimulation syndrome (OHSS) is a complication of controlled ovarian hyperstimulation (COH). It is a potentially life-threatening condition that usually occurs either after human chorionic gonadotropins (hCG) administration in susceptible patients or as a result of an implanting pregnancy, regardless of whether it was achieved by natural conception or infertility treatments. Despite many years of clinical experience regarding the adoption of preventive measures and the identification of patients at high risk, the pathophysiology of OHSS is poorly understood and no reliable predictive risk factors have been identified. Cases presentation: We report about two unexpected cases of OHSS following infertility treatments, occurring after freeze-all strategy with embryo cryopreservation approaches. The first case developed spontaneous OHSS (sOHSS), despite efforts to prevent its manifestation by a segmentation approach, including frozen embryo replacement cycle. The second case developed a late form of iatrogenic OHSS (iOHSS), even though the absence of any risk factors. No mutations in the follicle-stimulating hormone (FSH) receptor (FSHR)-encoding gene were detected, suggesting that the high levels of hCG due to the twin implanting pregnancies could be the only triggering factor of OHSS outbreak. Conclusion: Freeze-all strategy with embryo cryopreservation cannot entirely prevent the development of OHSS, which may occur in its spontaneous form independently from the FSHR genotype. Although OHSS remains a rare event, all infertile patients requiring ovulation induction or controlled ovarian stimulation (COS) may be at potential risk of OHSS, either in the presence or in the absence of risk factors. We suggest closely monitoring cases of pregnancy following infertility treatments in order to provide early diagnosis and adopt the conservative management

    Microbiota Composition and Probiotics Supplementations on Sleep Quality—A Systematic Review and Meta-Analysis

    Get PDF
    The gut microbiota (GM) plays a crucial role in human health. The bidirectional interaction between GM and the central nervous system may occur via the microbiota-gut-brain axis, possibly regulating the sleep/wake cycle. Recent reports highlight associations between intestinal dysbiosis and sleep disorders, suggesting that probiotics could ameliorate this condition. However, data are poor and inconsistent. The aim of this quantitative metanalytic study is to assess the GM composition in sleep disturbances and evaluate probiotics' effectiveness for managing sleep disorders. A systematic review was carried out until July 2022 in online databases, limiting the literature research to human studies and English language articles. No significant GM diversity between patients with sleep disturbances versus healthy controls was found, revealed by alpha-diversity, while beta-diversity is missing due to lack of proper reporting. However, probiotics supplementation significantly reduced the self-assessed parameter of sleep quality and disturbances Pittsburgh Sleep Quality Index (PSQI) score compared with the placebo. No difference in the Epworth Sleepiness Scale (ESS) score was found. While available data suggest that GM diversity is not related to sleep disturbances, probiotics administration strongly improves sleep quality as a subjective perception. However, heterogeneity of data reporting in the scientific literature should be considered as a limitation

    Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells

    Get PDF
    Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system
    • …
    corecore