180 research outputs found

    Infant milk formulas: effect of storage conditions on the stability of powdered products towards autoxidation

    Get PDF
    Thirty samples of powdered infant milk formulas containing polyunsaturated fatty acids (PUFAs) have been stored at four different temperatures (20, 28, 40 and 55 °C) and periodically monitored for their malondialdehyde (MDA) content up to one year. MDA levels ranged between 250 and 350 ng/kg in sealed samples with a maximum of 566 ng/kg in samples stored at 28 °C for three weeks after opening of their original packages, previously maintained for ten months at 20 °C. Sample stored at 40° and 55 °C were also submitted to CIE (Commission Internationale de l’Eclairage) colorimetric analysis, since color is the first sensorial property that consumers may evaluate. Overall, the results demonstrated a good stability of PUFA-enriched infant milk formulas in terms of MDA content. However, some care has to be paid when these products are not promptly consumed and stored for a long time after first opening

    Experimental and modeling study of drug release from HPMC-based erodible oral thin films

    Get PDF
    In this work hydroxypropyl methylcellulose (HPMC) fast-dissolving thin films for oral administration are investigated. Furosemide (Class IV of the Biopharmaceutical Classification System) has been used as a model drug for in vitro release tests using three different set-ups: the Franz cell, the millifluidic flow-through device, and the paddle type dissolution apparatus (USP II). In order to enable drug incorporation within HPMC films, a multifunctional excipient, hydroxypropyl- β -cyclodextrin (HP- β -CD) has been included in the formulation, and the influence of HP- β -CD on film swelling, erosion, and release properties has been investigated. Mathematical models capable of describing the swelling and release processes from HPMC erodible thin films in different apparatuses have been developed. In particular, we propose a new model for the description of drug transport and release in a Franz cell that accounts for the effect of the unavoidable imperfect mixing of the receptor chamber

    Can pulsed electromagnetic fields trigger on-demand drug release from high-tm magnetoliposomes?

    Get PDF
    Recently, magnetic nanoparticles (MNPs) have been used to trigger drug release from magnetoliposomes through a magneto-nanomechanical approach, where the mechanical actuation of the MNPs is used to enhance the membrane permeability. This result can be effectively achieved with low intensity non-thermal alternating magnetic field (AMF), which, however, found rare clinic application. Therefore, a different modality of generating non-thermal magnetic fields has now been investigated. Specifically, the ability of the intermittent signals generated by non-thermal pulsed electromagnetic fields (PEMFS) were used to verify if, once applied to high-transition temperature magnetoliposomes (high-Tm MLs), they could be able to efficiently trigger the release of a hydrophilic model drug. To this end, hydrophilic MNPs were combined with hydrogenated soybean phosphatidylcholine and cholesterol to design high-Tm MLs. The release of a dye was evaluated under the effect of PEMFs for different times. The MNPs motions produced by PEMF could effectively increase the bilayer permeability, without affecting the liposomes integrity and resulted in nearly 20% of release after 3 h exposure. Therefore, the current contribution provides an exciting proof-of-concept for the ability of PEMFS to trigger drug release, considering that PEMFS find already application in therapy due to their anti-inflammatory effects

    Freeze-dried nanocomposite gel beads for oral drug delivery. In vitro simulation of gastro-intestinal drug release

    Get PDF
    We investigated entrapment efficiency, swelling and drug release from freeze-dried gel beads prepared with Gellan gum and a synthetic clay, Laponite. Polymeric beads loaded with two model molecules having different molecular weights were prepared and subjected to in vitro release studies in simulated gastric and intestinal fluids. The experimental observations confirm that laponite may be an effective additive for fabricating sustained drug delivery systems from gellan gum by means of ionotropic gelation and freeze-drying

    Magnetoliposomes: envisioning new strategies for water decontamination

    Get PDF
    In this work, the inclusion of magnetic nanoparticles (MNPs) within phospholipid vesicles has been investigated as novel strategy for improving stability and reactivity of these nanoparticles and extending their potential use in the environmental field. Two phospholipids able to form liposomes characterized by different rigidity and stiffness, were used as potential carriers of MNPs. The magneto-responsive liposomes were investigated for their physicochemical and stability properties. In particular, the stability of the two systems was indirectly investigated evaluating the ability of the hybrid constructs to retain a fluorescent marker in their structure. Alterations in the permeability of the membranes were determined by the rate of the marker release from the liposomes, under both mechanical and thermal stress conditions

    Chemical investigation and screening of anti-proliferative activity on human cell lines of pure and nano-formulated lavandin essential oil

    Get PDF
    Lavandin essential oil (LEO), a natural sterile hybrid obtained by crossbreeding L. angustifolia × L. latifolia, is mainly composed by active components belonging to the family of terpenes endowed with relevant anti-proliferative activity, which can be enhanced by proper application of nanotechnology. In particular, this study reports the chemical characterization and the screening of the anti-proliferative activity on different human cell lines of pure and nano-formulated lavandin essential oil (EO). LEO and its formulation (NanoLEO) were analyzed by HS/GC-MS (Headspace/Gas Chromatography-Mass Spectrometry) to describe and compare their chemical volatile composition. The most abundant compounds were linalool and 1,8-cineole (LEO: 28.6%; 27.4%) (NanoLEO: 60.4%; 12.6%) followed by α-pinene (LEO: 9.6%; NanoLEO: 4.5%), camphor (LEO: 6.5%; NanoLEO: 7.0%) and linalyl acetate (LEO: 6.5%; NanoLEO: 3.6%). The cytotoxic effects of LEO and NanoLEO were investigated on human neuroblastoma cells (SHSY5Y), human breast adenocarcinoma cells (MCF-7), human lymphoblastic leukemia cells (CCRF CEM), human colorectal adenocarcinoma cells (Caco-2) and one normal breast epithelial cell (MCF10A) by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)-assay. Caco-2, MCF7 and MCF10A normal cells resulted more resistant to the treatment with LEO, while CCRF-CEM and SHSY5Y cells were more sensitive. The antiproliferative effect of LEO resulted amplified when the essential oil was supplied as nanoformulation, mainly in Caco-2 cells. Scanning and transmission electron microscopy investigations were carried out on Caco-2 cells to outline at ultrastructural level possible affections induced by LEO and NanoLEO treatments

    Survival trends over 20 years in patients with advanced cholangiocarcinoma: Results from a national retrospective analysis of 922 cases in Italy

    Get PDF
    : Cholangiocarcinoma is a rare group of tumors that involve the hepatic biliary tree. Prognosis for patients with cholangiocarcinoma remains dismal. Herein, we present survival trends over a long time period spanning almost 20 years in patients with advanced cholangiocarcinoma receiving systemic chemotherapy. We retrospectively analyzed a large multicenter dataset of cholangiocarcinoma outpatients evaluated in 14 centers within the Cholangiocarcinoma Italian Group Onlus (Gruppo Italiano Colangiocarcinoma Onlus, G.I.C.O.) between 2000 and 2017 (first-line), and 2002 and 2017 (second-line). Three time periods were considered: 2000-2009, 2010-2013, and 2014-2017. A total of 922 patients (51.19% male) with cholangiocarcinoma undergoing first-line therapy were evaluated. The median durations of follow-up for progression-free survival (PFS) and overall survival (OS) were 37 and 57 months, respectively. PFS at 12 months in the three periods of starting first-line therapy was similar, ranging from 11.71% to 15.25%. OS at 12 months progressively improved (38.30%, 44.61% and 49.52%, respectively), although the differences were not statistically significant after adjusting for age, disease status, and primary tumor site. A total of 410 patients (48.5% male) underwent second-line chemotherapy. The median durations of follow-up for PFS and OS were 47.6 and 41.90 months, respectively. An OS of 24.3%, 32.3%, and 33.1% was observed in 2002-2009, 2010-2013, and 2014-2017, respectively. Despite incremental benefits across years, our clinical experience confirms that modest overall advances have been achieved with first- and second-line chemotherapy in advanced cholangiocarcinoma. Efforts should focus on the identification of patients who derive the greatest benefit from treatment

    Reactivity of the electrogenerated O2./CO2 system toward alcohols

    No full text
    • …
    corecore