417 research outputs found

    Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions

    Get PDF
    Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24°C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth—slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem

    Ecological implications beyond the ecotoxicity of plastic debris on marine phytoplankton assemblage structure and functioning

    Get PDF
    none7noPlastic pollution is a global issue posing a threat to marine biota with ecological implications on ecosystem functioning. Micro and nanoplastic impact on phytoplankton autotrophic species (e.g., cell growth inhibition, decrease in chlorophyll a and photosynthetic efficiency and hetero-aggregates formation) have been largely documented. However, the heterogeneity of data makes rather difficult a comparison based on size (i.e. micro vs nano). In addition, knowledge gaps on the ecological impact on phytoplankton assemblage structure and functioning are evident. A new virtual meta-analysis on cause-effect relationships of micro and nanoplastics on phytoplankton species revealed the significant effect posed by polymer type on reducing cell density for tested PVC, PS and PE plastics. Linked with autotrophic phytoplankton role in atmospheric CO2 fixation, a potential impact of plastics on marine carbon pump is discussed. The understanding of the effects of microplastics and nanoplastics on the phytoplankton functioning is fundamental to raise awareness on the overall impact on the first level of marine food web. Interactions between micro and nanoplastics and phytoplankton assemblages have been quite documented by in vitro examinations; but, further studies considering natural plankton assemblages and/or large mesocosm experiments should be performed to evaluate and try predicting ecological impacts on primary producers.openCasabianca Silvia, Bellingeri Arianna, Capellacci Samuela, Sbrana Alice, Russo Tommaso, Corsi Ilaria, Penna AntonellaCasabianca, Silvia; Bellingeri, Arianna; Capellacci, Samuela; Sbrana, Alice; Russo, Tommaso; Corsi, Ilaria; Penna, Antonell

    Physical interactions between marine phytoplankton and PET plastics in seawater.

    Get PDF
    Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to insitu characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time

    Identifying the hydraulic transmissivity of an aquifer with noisy hydraulic head data: a comparison study using three direct inversion methods

    Get PDF
    The parameters required to set up an hydrological model are often obtained by solving an inverse problem, using indirect or direct solution methods. Indirect methods are widely used, in particular when the state variable (here the hydraulic head h) is known at sparse locations only. Despite their flexibility, when the number of parameters rises, their computational requirements can become a challenging issue, together with problems related to non-uniqueness and instability. On the other side, direct methods have other limitations, including a more exhaustive knowledge of the state variables, but are less demanding in terms of computational resources. In this work three direct inversion methods are compared: the Comparison Model Method (CMM), the Double Constraint Method (DCM) and the Differential System Method (DSM). The three methods are compared on a two-dimensional synthetic aquifer, whose geometry, boundary conditions and h measurements are realistic and extracted from a data set collected for the aquifer of Weiach, north of Switzerland. Sequential-Gaussian simulation (SGS) was used to generate a transmissivity field (T ) for the aquifer, which was then used to obtain the h data required by the three methods. A noise of increasing magnitude was added to h to verify the stability of the methods with respect to noisy input data. For a small noise on the input h, the results obtained with the three methods are comparable. However, for more noisy data, the DCM is more robust, whereas the DSM is very sensitive to the position of the starting point for integration and to the T value assigned there

    Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems.

    Get PDF
    Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS-COOH NPs, 90 nm) for 15 days (1, 10, 50 mu g/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms' fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface

    Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata.

    Get PDF
    Ostreopsis cf. ovata is a harmful benthic dinoflagellate, widespread along most of the Mediterranean coasts. It produces a wide range of palytoxin-like compounds and variable amounts of mucus that may totally cover substrates, especially during the stationary phase of blooms. Studies on different aspects of the biology and ecology of Ostreopsis spp. are increasing, yet knowledge on toxicity mechanism is still limited. In particular, the potential active role of the mucilaginous matrix has not yet been shown, although when mass mortalities have occurred, organisms have been reported to be covered by the typical brownish mucilage. In order to better elucidate toxicity dependence on direct/indirect contact, the role of the mucilaginous matrix and the potential differences in toxicity along the growth curve of O. cf. ovata, we carried out a toxic bioassay during exponential, stationary and late stationary phases. Simultaneously, a molecular assay was performed to quantify intact cells or to exclude cells presence. A liquid chromatography – high resolution mass spectrometry (LC-HRMS) analysis was also carried out to evaluate toxin profile and content in the different treatments. Our results report higher mortality of model organism, especially during the late stationary phase, when direct contact between a model organism and intact microalgal cells occurs (LC50-48h <4 cells/ml on Artemia salina). Also growth medium devoid of microalgal cells but containing O. cf. ovata mucilage caused significant toxic effects. This finding is also supported by chemical analysis which shows the highest toxin content in pellet extract (95%) and around 5% of toxins in the growth medium holding mucous, while the treatment devoid of both cells and mucilage did not contain any detectable toxins. Additionally, the connection between mucilaginous matrix and thecal plates, pores and trychocysts was explored by way of atomic force microscopy (AFM) to investigate the cell surface at a sub-nanometer resolution, providing a pioneering description of cellular features

    最大値原理に関連する諸課題

    Get PDF
    学位の種別:課程博士University of Tokyo(東京大学
    corecore