9,526 research outputs found

    Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing

    Get PDF
    Laser Interferometer Gravitational-Wave Observatory (LIGO) is a joint project of the California Institute of Technology and the Massachusetts Institute of Technology funded by the National Science Foundation. The project is designed to detect gravitational waves from astrophysical sources such as supernova and black holes. The LIGO project constructed observatories at two sites in the U.S. Each site includes two beam tubes (each 4 km long) joined to form an "L" shape. The beam tube is a 1.25 m diam 304 L stainless steel, ultrahigh vacuum tube that will operate at 1×10^–9 Torr or better. The beam tube was manufactured using a custom spiral weld tube mill from material processed to reduce the outgassing rate in order to minimize pumping costs. The integrity of the beam tube was assured by helium mass spectrometer leak testing each component of the beam tube system prior to installation. Each 2 km long, isolatable beam tube module was then leak tested after completion

    Nonstatistical dynamics on potentials exhibiting reaction path bifurcations and valley-ridge inflection points

    Get PDF
    We study reaction dynamics on a model potential energy surface exhibiting post-transition state bifurcation in the vicinity of a valley ridge inflection point. We compute fractional yields of products reached after the VRI region is traversed, both with and without dissipation. It is found that apparently minor variations in the potential lead to significant changes in the reaction dynamics. Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI point itself play essentially no role in determining the product ratio, except in the highly dissipative regime.Comment: 33 pages, 10 figures, corrected the author name in reference [6

    New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions

    Full text link
    We construct new, efficient, and accurate high-order finite differencing operators which satisfy summation by parts. Since these operators are not uniquely defined, we consider several optimization criteria: minimizing the bandwidth, the truncation error on the boundary points, the spectral radius, or a combination of these. We examine in detail a set of operators that are up to tenth order accurate in the interior, and we surprisingly find that a combination of these optimizations can improve the operators' spectral radius and accuracy by orders of magnitude in certain cases. We also construct high-order dissipation operators that are compatible with these new finite difference operators and which are semi-definite with respect to the appropriate summation by parts scalar product. We test the stability and accuracy of these new difference and dissipation operators by evolving a three-dimensional scalar wave equation on a spherical domain consisting of seven blocks, each discretized with a structured grid, and connected through penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the derivative and dissipation operators can be accessed by downloading the source code for the document. The files are located in the "coeffs" subdirector

    The W51 Giant Molecular Cloud

    Get PDF
    We present 45"-47" angular resolution maps at 50" sampling of the 12CO and 13CO J=1-0 emission toward a 1.39 deg x 1.33 deg region in the W51 HII region complex. These data permit the spatial and kinematic separation of several spectral features observed along the line of sight to W51, and establish the presence of a massive (1.2 x 10^6 Mo), large (83 pc x 114 pc) giant molecular cloud (GMC), defined as the W51 GMC, centered at (l,b,V) = (49.5 deg, -0.2 deg, 61 km/s). A second massive (1.9 x 10^5 Mo), elongated (136 pc x 22 pc) molecular cloud is found at velocities of about 68 km/s along the southern edge of the W51 GMC. Of the five radio continuum sources that classically define the W51 region, the brightest source at lambda 6cm (G49.5-0.4) is spatially and kinematically coincident with the W51 GMC and three (G48.9-0.3, G49.1-0.4, and G49.2-0.4) are associated with the 68 km/s cloud. Published absorption line spectra indicate that the fifth prominent continuum source (G49.4-0.3) is located behind the W51 molecular cloud. The W51 GMC is among the upper 1% of clouds in the Galactic disk by size and the upper 5-10% by mass. While the W51 GMC is larger and more massive than any nearby molecular cloud, the average H2 column density is not unusual given its size and the mean H2 volume density is comparable to that in nearby clouds. The W51 GMC is also similar to other clouds in that most of the molecular mass is contained in a diffuse envelope that is not currently forming massive stars. We speculate that much of the massive star formation activity in this region has resulted from a collision between the 68 km/s cloud and the W51 GMC.Comment: Accepted for publication by the Astronomical Journal. 21 pages, plus 7 figures and 1 tabl

    A redshifted Fe Kα\alpha line from the unusual gamma-ray source PMN J1603-4904

    Full text link
    Multiwavelength observations have revealed the highly unusual properties of the gamma-ray source PMN J1603-4904, which are difficult to reconcile with any other well established gamma-ray source class. The object is either a very atypical blazar or compact jet source seen at a larger angle to the line of sight. In order to determine the physical origin of the high-energy emission processes in PMN J1603-4904, we study the X-ray spectrum in detail. We performed quasi-simultaneous X-ray observations with XMM-Newton and Suzaku in 2013 September, resulting in the first high signal-to-noise X-ray spectrum of this source. The 2-10 keV X-ray spectrum can be well described by an absorbed power law with an emission line at 5.44±\pm0.05 keV (observed frame). Interpreting this feature as a K{\alpha} line from neutral iron, we determine the redshift of PMN J1603-4904 to be z=0.18±\pm0.01, corresponding to a luminosity distance of 872±\pm54 Mpc. The detection of a redshifted X-ray emission line further challenges the original BL Lac classification of PMN J1603-4904. This result suggests that the source is observed at a larger angle to the line of sight than expected for blazars, and thus the source would add to the elusive class of gamma-ray loud misaligned-jet objects, possibly a {\gamma}-ray bright young radio galaxy.Comment: 5 pages, 1 figure, A&A accepte

    Nature of yrast excitations near N=40: Level structure of Ni-67

    Full text link
    Excited states in Ni-67 were populated in deep-inelastic reactions of a Ni-64 beam at 430 MeV on a thick U-238 target. A level scheme built on the previously known 13 micro-s isomer has been delineated up to an excitation energy of ~5.3 MeV and a tentative spin and parity of (21/2-). Shell model calculations have been carried out using two effective interactions in the f5/2pg9/2 model space with a Ni-56 core. Satisfactory agreement between experiment and theory is achieved for the measured transition energies and branching ratios. The calculations indicate that the yrast states are associated with rather complex configurations, herewith demonstrating the relative weakness of the N=40 subshell gap and the importance of multi particle-hole excitations involving the g9/2 neutron orbital.Comment: Accepted by Physical Review

    The Importance of Audit Firm Characteristics and the Drivers of Auditor Change in UK Listed Companies

    Get PDF
    This paper explores the importance of audit firm characteristics and the factors motivating auditor change based on questionnaire responses from 210 listed UK companies (a response rate of 70%). Twenty-nine potentially desirable auditor characteristics are identified from the extant literature and their importance elicited. Exploratory factor analysis reduces these variables to eight uncorrelated underlying dimensions: reputation/quality; acceptability to third parties; value for money; ability to provide non-audit services; small audit firm; specialist industry knowledge; non-Big Six large audit firm; and geographical proximity. Insights into the nature of 'the Big Six factor' emerge. Two thirds of companies had recently considered changing auditors; the main reasons cited being audit fee level, dissatisfaction with audit quality and changes in top management. Of those companies that considered change, 73% did not actually do so, the main reasons cited being fee reduction by the incumbent and avoidance of disruption. Thus audit fee levels are both a key precipitator of change and a key factor in retaining the status quo

    Catastrophic Phase Transitions and Early Warnings in a Spatial Ecological Model

    Full text link
    Gradual changes in exploitation, nutrient loading, etc. produce shifts between alternative stable states (ASS) in ecosystems which, quite often, are not smooth but abrupt or catastrophic. Early warnings of such catastrophic regime shifts are fundamental for designing management protocols for ecosystems. Here we study the spatial version of a popular ecological model, involving a logistically growing single species subject to exploitation, which is known to exhibit ASS. Spatial heterogeneity is introduced by a carrying capacity parameter varying from cell to cell in a regular lattice. Transport of biomass among cells is included in the form of diffusion. We investigate whether different quantities from statistical mechanics -like the variance, the two-point correlation function and the patchiness- may serve as early warnings of catastrophic phase transitions between the ASS. In particular, we find that the patch-size distribution follows a power law when the system is close to the catastrophic transition. We also provide links between spatial and temporal indicators and analyze how the interplay between diffusion and spatial heterogeneity may affect the earliness of each of the observables. We find that possible remedial procedures, which can be followed after these early signals, are more effective as the diffusion becomes lower. Finally, we comment on similarities and differences between these catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid-vapour change of state for a fluid like water

    Composite Zero Valent Iron Nanoparticles And Applications Thereof

    Get PDF
    In one aspect, composite particles are described herein. A composite particle comprises a substrate, composite metallic or metal oxide nanoparticles supported by the substrate and an amphiphilic or hydrophilic component associated with the substrate, wherein the composite metallic or metal oxide nanoparticles comprise iron and at least one additional transition metal
    corecore