39 research outputs found
Time-splitting approximation of the Cauchy problem for a stochastic conservation law
International audienceIn this paper, we present a time discretization of a first-order hyperbolic equation of nonlinear type set in Rd and perturbed by a multiplicative noise. Using an operator splitting method, we are able to show the existence of an approximate solution. Thanks to recent techniques of well-posedness theory on this kind of stochastic equations, we show the convergence of such an approximate solution towards the unique stochastic entropy solution of the problem, as the time step of the splitting scheme converges to zero
A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force
International audienceIn this paper we are interested in the Cauchy problem for a nonlinear degenerate parabolic-hyperbolic problem with multiplicative stochastic forcing. Using an adapted entropy formulation a result of existence and uniqueness of a solution is proved
Convergence of a TPFA scheme for a diffusion-convection equation with a multiplicative stochastic noise
The aim of this paper is to address the convergence analysis of a
finite-volume scheme for the approximation of a stochastic non-linear parabolic
problem set in a bounded domain of and under homogeneous Neumann
boundary conditions. The considered discretization is semi-implicit in time and
TPFA in space. By adapting well-known methods for the time-discretization of
stochastic PDEs, one shows that the associated finite-volume approximation
converges towards the unique variational solution of the continuous problem
strongly in .Comment: arXiv admin note: text overlap with arXiv:2203.0985
Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with multiplicative noise
We study here the discretization by monotone finite volume schemes of multi-dimensional nonlinear scalar conservation laws forced by a multiplicative noise with a time and space dependent flux-function and a given initial data in . After establishing the well-posedness theory for solutions of such kind of stochastic problems, we prove under a stability condition on the time step the convergence of the finite volume approximation towards the unique stochastic entropy solution of the equation
A Multi-Scale Model of Soft Imperfect Interface with Nonlocal Damage
International audienceThe aim of this paper is to propose a model of bonded interface including nonlocal damage and unilateral conditions. The model is derived from the problem of a composite structure made by two adherents and a thin adhesive. The adhesive is damaged at microscopic level and is subjected to two regimes, one in traction and one in compression. The model of interface is derived by matched asymptotic expansions. In this paper, two cases corresponding to the two regimes are discussed. Moreover, this model can be considered as a model of contact with adhesion and unilateral constraint. At the end of the paper, a simple numerical example is presented to show the evolution of the model
Well-posedness result for a system of random heat equation coupled with a multiplicative stochastic Barenblatt equation
In this paper, a stochastic nonlinear evolution system under Neumann boundary conditions is investigated. Precisely, we are interested in finding an existence and uniqueness result for a system of random heat equation coupled with a Barenblatt's type equation with a multiplicative stochastic force in the sense of ItĂŽ. To do so, we investigate in a first step the case of an additive noise through a semi-implicit in time discretization of the system. This allows us to show the well-posedness of the system in the additive case. In a second step, the derivation of continuous dependence estimates of the solution with respect to the data allows us to show the desired existence and uniqueness result for the multiplicative case
Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise
We study here the approximation by a finite-volume scheme of a heat equation
forced by a Lipschitz continuous multiplicative noise in the sense of It\^o.
More precisely, we consider a discretization which is semi-implicit in time and
a two-point flux approximation scheme (TPFA) in space. We adapt the method
based on the theorem of Prokhorov to obtain a convergence in distribution
result, then Skorokhod's representation theorem yields the convergence of the
scheme towards a martingale solution and the Gy\"{o}ngy-Krylov argument is used
to prove convergence in probability of the scheme towards the unique
variational solution of our parabolic problem
ON ABSTRACT BARENBLATT EQUATIONS
In this paper we are interested in abstract problems of Barenblatt's type. In a first part, we investigate the problem f (â t u) + Au = g where f and A are maximal monotone operators and by assuming that A derives from a potential J . With general assumptions on the operators, we prove the existence of a solution. In the second part of the paper, we examine a stochastic version of the above problem: f [â t (u â t 0 hdw)] + Au = 0 , with some restrictive assumptions on the data due principally to the framework of the ItĂŽ integral
Study on stochastic partial differential equations
Cette theÌse sâinscrit dans le domaine matheÌmatique de lâanalyse des eÌquations aux deÌriveÌes partielles (EDP) non-lineÌaires stochastiques. Nous nous inteÌressons aÌ des EDP paraboliques et hyperboliques que lâon perturbe stochastiquement au sens dâItoÌ. Il sâagit dâintroduire lâaleÌatoire via lâajout dâune inteÌgrale stochastique (inteÌgrale dâItoÌ) qui peut deÌpendre ou non de la solution, on parle alors de bruit multiplicatif ou additif. La preÌsence de la variable de probabiliteÌ ne nous permet pas dâutiliser tous les outils classiques de lâanalyse des EDP. Notre but est dâadapter les techniques connues dans le cadre deÌterministe aux EDP non lineÌaires stochastiques en proposant des meÌthodes alternatives. Les reÌsultats obtenus sont deÌcrits dans les cinq chapitres de cette theÌse : Dans le Chapitre I, nous eÌtudions une perturbation stochastique des eÌquations de Barenblatt. En utilisant une semi- discreÌtisation implicite en temps, nous eÌtablissons lâexistence et lâuniciteÌ dâune solution dans le cas additif, et graÌce aux proprieÌteÌs de la solution nous sommes en mesure dâeÌtendre ce reÌsultat au cas multiplicatif aÌ lâaide dâun theÌoreÌme de point fixe. Dans le Chapitre II, nous consideÌrons une classe dâeÌquations de type Barenblatt stochastiques dans un cadre abstrait. Il sâagit laÌ dâune geÌneÌralisation des reÌsultats du Chapitre I. Dans le Chapitre III, nous travaillons sur lâeÌtude du probleÌme de Cauchy pour une loi de conservation stochastique. Nous montrons lâexistence dâune solution par une meÌthode de viscositeÌ artificielle en utilisant des arguments de compaciteÌ donneÌs par la theÌorie des mesures de Young. LâuniciteÌ repose sur une adaptation de la meÌthode de deÌdoublement des variables de Kruzhkov.. Dans le Chapitre IV, nous nous inteÌressons au probleÌme de Dirichlet pour la loi de conservation stochastique eÌtudieÌe au Chapitre III. Le point remarquable de lâeÌtude repose sur lâutilisation des semi-entropies de Kruzhkov pour montrer lâuniciteÌ. Dans le Chapitre V, nous introduisons une meÌthode de splitting pour proposer une approche numeÌrique du probleÌme eÌtudieÌ au Chapitre IV, suivie de quelques simulations de lâeÌquation de Burgers stochastique dans le cas unidimensionnel.This thesis deals with the mathematical field of stochastic nonlinear partial differential equationsâ analysis. We are interested in parabolic and hyperbolic PDE stochastically perturbed in the ItoÌ sense. We introduce randomness by adding a stochastic integral (ItoÌ integral), which can depend or not on the solution. We thus talk about a multiplicative noise or an additive one. The presence of the random variable does not allow us to apply systematically classical tools of PDE analysis. Our aim is to adapt known techniques of the deterministic setting to nonlinear stochastic PDE analysis by proposing alternative methods. Here are the obtained results : In Chapter I, we investigate on a stochastic perturbation of Barenblatt equations. By using an implicit time discretization, we establish the existence and uniqueness of the solution in the additive case. Thanks to the properties of such a solution, we are able to extend this result to the multiplicative noise using a fixed-point theorem. In Chapter II, we consider a class of stochastic equations of Barenblatt type but in an abstract frame. It is about a generalization of results from Chapter I. In Chapter III, we deal with the study of the Cauchy problem for a stochastic conservation law. We show existence of solution via an artificial viscosity method. The compactness arguments are based on Young measure theory. The uniqueness result is proved by an adaptation of the Kruzhkov doubling variables technique. In Chapter IV, we are interested in the Dirichlet problem for the stochastic conservation law studied in Chapter III. The remarkable point is the use of the Kruzhkov semi-entropies to show the uniqueness of the solution. In Chapter V, we introduce a splitting method to propose a numerical approach of the problem studied in Chapter IV. Then we finish by some simulations of the stochastic Burgersâ equation in the one dimensional case
EDP stochastiques, schémas volumes-finis et application à la mécanique
In this manuscript are presented the research activities I have carried out since my arrival in Marseille ten years ago following my PhD thesis. They are part of the mathematical field of theoretical analysis and numerical approxi- mation of stochastic partial differential equations (SPDEs). More precisely, they concern the study of non-linear problems perturbed by a stochastic integral of ItĂŽâs type depending or not of the solution, commonly referred to as multiplicative (respectively additive) noise. The approach employed here is based on the use and combination of techniques from PDEâs analysis, probability theory and stochastic calculus. Two types of SPDEs were studied: on the one hand, scalar con- servation laws of hyperbolic and then parabolic type for which construction and convergence analysis of finite-volume schemes have been developed, and on the other hand parabolic equations related to solid mechanics modeling for which well-posedness issues have been investigated.Sont prĂ©sentĂ©es dans ce manuscrit les activitĂ©s de recherche que jâai menĂ©es depuis mon arrivĂ©e Ă Marseille il y a dix ans suite Ă mon doctorat. Ces derniĂšres sâinscrivent dans le domaine mathĂ©matique de lâanalyse thĂ©orique et de lâapproximation numĂ©rique dâEDP stochastiques. Plus prĂ©cisĂ©ment, elles concernent lâĂ©tude de problĂšmes non-linĂ©aires perturbĂ©s par une intĂ©grale stochastique dâItĂŽ dĂ©pendant ou non de la solution, on parle alors de bruit multiplicatif ou additif. Lâapproche mathĂ©matique choisie dans mes recherches consiste Ă adapter et combiner les techniques connues en analyse des EDP avec des outils de thĂ©orie des probabilitĂ©s et de calcul stochastique. Les EDP stochastiques que jâai Ă©tudiĂ©es ont Ă©tĂ© de deux types : dâun cĂŽtĂ© des lois de conservation scalaires de type hyperbolique puis parabolique pour lesquelles je me suis attachĂ©e Ă la construction et lâanalyse de convergence de schĂ©mas numĂ©riques de type volumes-finis, et de lâautre des Ă©quations paraboliques liĂ©es Ă la modĂ©lisation en mĂ©canique du solide pour lesquelles jâai regardĂ© des questions dâexistence et dâunicitĂ© de solution