7,637 research outputs found

    An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation

    Full text link
    In the present work we show that planetary mean distances can be calculated with the help of a Schrodinger-type diffusion equation. The obtained results are shown to agree with the observed orbits of all the planets and of the asteroid belt in the solar system, with only three empty states. Furthermore, the equation solutions predict a fundamental orbit at 0.05 AU from solar-type stars, a result confirmed by recent discoveries. In contrast to other similar approaches previously presented in the literature, we take into account the flatness of the solar system, by considering the flat solutions of the Schrodinger-type equation. The model has just one input parameter, given by the mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons & Fractal

    Deformed Gaussian Orthogonal Ensemble description of Small-World networks

    Full text link
    The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, Random Matrix Theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of Small World (SW) networks using an extension of the Gaussian Orthogonal Ensemble. This RMT ensemble, coined the Deformed Gaussian Orthogonal Ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics till certain range of eigenvalues correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.Comment: Replaced with the revised version, accepted for publication in Phys. Rev.

    Non-singular inflation with vacuum decay

    Full text link
    On the basis of a semi-classical analysis of vacuum energy in an expanding spacetime, we describe a non-singular cosmological model in which the vacuum density decays with time, with a concomitant production of matter. During an infinitely long period we have an empty, inflationary universe, with H \approx 1. This primordial era ends in a fast phase transition, during which H and \Lambda decrease to nearly zero in a few Planck times, with release of a huge amount of radiation. The late-time scenario is similar to the standard model, with the radiation phase followed by a long dust era, which tends asymptotically to a de Sitter universe, with vacuum dominating again. An analysis of the redshift-distance relation for supernovas Ia leads to cosmological parameters in agreement with other current estimations.Comment: Work presented at IRGAC 2006, Barcelona, July 11-15 2006. To appear in a special issue of Journal of Physics

    Decifrando o genoma em grande escala.

    Get PDF
    A determinação das funções gêni~~stem de~andado um grande avanço das ciências genômicas, cujas tecnologias concentram-se, principalmente, na geração e no estudo de uma grande quantidade de dados. O ponto de apoio para o entendimento da função gênica e da estrutura do genoína tem sido o sequenciamento de genomas completos e do genoma expresso em grande escala. Mapas físicos e genéticos têm sido integrados com informações genôrnicas e de expressão, resultando em bancos de dados públicos altamente informativos para diferentes espécies animais evegetais. Tais informações auxiliam em vários aspectos a análise·de expressão gênica, a determinação dos efeitos de processamento de éxons.e do número de cópias gênicas e cromossômicas, culminando na determinação das funções biológicas e do mecanismo de ação de vários genes. São descritos o surgimento de novas tecnologias e a evolução de algumas inovações já existentes, voltadas para a identificação de funções gênicas

    Observational constraints on late-time Lambda(t) cosmology

    Full text link
    The cosmological constant, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.Comment: Some important revisions. To appear in Physical Review

    Thymus: still an underexplored organ in medical practice

    Get PDF

    An interacting model for the cosmological dark sector

    Get PDF
    We discuss a new interacting model for the cosmological dark sector in which the attenuated dilution of cold dark matter scales as a3f(a)a^{-3}f(a), where f(a) is an arbitrary function of the cosmic scale factor aa. From thermodynamic arguments, we show that f(a) is proportional to entropy source of the particle creation process. In order to investigate the cosmological consequences of this kind of interacting models, we expand f(a) in a power series and viable cosmological solutions are obtained. Finally, we use current observational data to place constraints on the interacting function f(a).Comment: 5 pages, 3 figures, Phys. Rev. D (in press

    Weber-like interactions and energy conservation

    Get PDF
    Velocity dependent forces varying as k(r^/r)(1μr˙2+γrr¨)k(\hat{r}/r)(1 - \mu \dot{r}^2 + \gamma r \ddot{r}) (such as Weber force), here called Weber-like forces, are examined from the point of view of energy conservation and it is proved that they are conservative if and only if γ=2μ\gamma=2\mu. As a consequence, it is shown that gravitational theories employing Weber-like forces cannot be conservative and also yield both the precession of the perihelion of Mercury as well as the gravitational deflection of light.Comment: latex, 11 pages, no figure

    On the performance of profile extrusion dies

    Get PDF
    This work presents a study performed with an in-house 3D numerical modelling code, used to evaluate the sensitivity of extrusion dies, optimized with alternative strategies, to process parameters, such as machining inaccuracies, melt rheology and processing conditions.FC
    corecore