435 research outputs found

    N* Spectrum using an O(a)-Improved Fermion Action

    Get PDF
    The construction of operators and calculational methods for the determination of the N* spectrum are discussed. The masses of the parity partners of the nucleon and delta are computed from the O(a)-improved data of the UKQCD Collaboration, and a clear splitting observed between the mass of the nucleon and its parity partner.Comment: Lattice 2000 (subject), 4 pages, 5 postscript figure

    Numerical computation of real or complex elliptic integrals

    Full text link
    Algorithms for numerical computation of symmetric elliptic integrals of all three kinds are improved in several ways and extended to complex values of the variables (with some restrictions in the case of the integral of the third kind). Numerical check values, consistency checks, and relations to Legendre's integrals and Bulirsch's integrals are included

    Reproductive Performance of Chickens as Influenced by Antibiotics in the Diet

    Get PDF
    Many workers have reported on the failure of antibiotic supplementation to improve the performance of hens already in high egg production. On the other hand, reports have appeared which indicated that under similar conditions the antibiotics have favorably affected the performances of laying pullets. The experiments of this study were designed to make it possible to determine effects of supplementation with antibiotics as well as to compare various feeding systems

    Negative-parity Baryon Masses using an O(a)-improved Fermion Action

    Get PDF
    We present a calculation of the mass of the lowest-lying negative-parity J=1/2- state in quenched QCD. Results are obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the mass of the nucleon and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.Comment: 13 pages, 8 figures, revtex Version accepted for publication in Physics Letters B. Some changes to discussion of chiral extrapolations; primary results unchange

    Superconductivity and Charge Density Wave in a Quasi-One-Dimensional Spin Gap System

    Full text link
    We consider a model of spin-gapped chains weakly coupled by Josephson and Coulomb interactions. Combining such non-perturbative methods as bosonization and Bethe ansatz to treat the intra-chain interactions with the Random Phase Approximation for the inter-chain couplings and the first corrections to this, we investigate the phase diagram of this model. The phase diagram shows both charge density wave ordering and superconductivity. These phases are seperated by a line of critical points which exhibits an approximate an SU(2) symmetry. We consider the effects of a magnetic field on the system. We apply the theory to the material Sr_2 Ca_12 Cu_24 O_41 and suggest further experiments.Comment: 14 pages, 7 figure; submitted to PRB; Revised with new version: references added; section on the flux state remove

    Interacting Electrons on a Fluctuating String

    Full text link
    We consider the problem of interacting electrons constrained to move on a fluctuating one-dimensional string. An effective low-energy theory for the electrons is derived by integrating out the string degrees of freedom to lowest order in the inverse of the string tension and mass density, which are assumed to be large. We obtain expressions for the tunneling density of states, the spectral function and the optical conductivity of the system. Possible connections with the phenomenology of the cuprate high temperature superconductors are discussed.Comment: 14 pages, 1 figur

    Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion

    Get PDF
    The masses of the negative parity SU(6) 70-plet baryons are analyzed in the 1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this level of precision there are twenty predictions. Among them there are the well known Gell-Mann Okubo and equal spacing relations, and four new relations involving SU(3) breaking splittings in different SU(3) multiplets. Although the breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be small. The dominant source of the breaking is the hyperfine interaction which is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is entirely fixed by the splitting between the singlet states Lambda(1405) and Lambda(1520), and the spin-orbit puzzle is solved by the presence of other zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Perturbative QCD and factorization of coherent pion photoproduction on the deuteron

    Full text link
    We analyze the predictions of perturbative QCD for pion photoproduction on the deuteron, gamma D -> pi^0 D, at large momentum transfer using the reduced amplitude formalism. The cluster decomposition of the deuteron wave function at small binding only allows the nuclear coherent process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer. Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus the nuclear photoproduction amplitude, M_{gamma D -> pi^0 D}(u,t), factorizes as a product of three factors: (1) the nucleon photoproduction amplitude, M_{gamma N_1 -> pi^0 N_1}(u/4,t/4), at half of the overall momentum transfer, (2) a nucleon form factor, F_{N_2}(t/4), at half the overall momentum transfer, and (3) the reduced deuteron form factor, f_d(t), which according to perturbative QCD, has the same monopole falloff as a meson form factor. A comparison with the recent JLAB data for gamma D -> pi^0 D of Meekins et al. [Phys. Rev. C 60, 052201 (1999)] and the available gamma p -> pi^0 p data shows good agreement between the perturbative QCD prediction and experiment over a large range of momentum transfers and center of mass angles. The reduced amplitude prediction is consistent with the constituent counting rule, p^11_T M_{gamma D -> pi^0 D} -> F(theta_cm), at large momentum transfer. This is found to be consistent with measurements for photon lab energies E_gamma > 3 GeV at theta_cm=90 degrees and \elab > 10 GeV at 136 degrees.Comment: RevTeX 3.1, 17 pages, 6 figures; v2: incorporates minor changes as version accepted by Phys Rev

    Excited Baryons in Lattice QCD

    Get PDF
    We present first results for the masses of positive and negative parity excited baryons calculated in lattice QCD using an O(a^2)-improved gluon action and a fat-link irrelevant clover (FLIC) fermion action in which only the irrelevant operators are constructed with APE-smeared links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner. An correlation matrix analysis reveals two low-lying J^P=(1/2)^- states with a small mass splitting. The study of different Lambda interpolating fields suggests a similar splitting between the lowest two Lambda1/2^- octet states. However, the empirical mass suppression of the Lambda^*(1405) is not evident in these quenched QCD simulations, suggesting a potentially important role for the meson cloud of the Lambda^*(1405) and/or a need for more exotic interpolating fields.Comment: Correlation matrix analysis performed. Increased to 400 configurations. 22 pages, 13 figures, 15 table
    • …
    corecore