3,845 research outputs found
Splitting of the pi - rho spectrum in a renormalized light-cone QCD-inspired model
We show that the splitting between the light pseudo-scalar and vector meson
states is due to the strong short-range attraction in the ^1S_0 sector which
makes the pion and the kaon light particles. We use a light-cone QCD-inspired
model of the mass squared operator with harmonic confinement and a Dirac-delta
interaction. We apply a renormalization method to define the model, in which
the pseudo-scalar ground state mass fixes the renormalized strength of the
Dirac-delta interaction.Comment: 9 pages, 2 figures, revtex, accepted by Phys. Rev. D; Corrected typo
Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: spin-0 and spin-1 two-fermion systems
The connection between the Feynman triangle diagram and the light-front
formalism for spin-0 and spin-1 two-fermion systems is analyzed. It is shown
that in the limit q+ = 0 the form factors for both spin-0 and spin-1 systems
can be uniquely determined using only the good amplitudes, which are not
affected by spurious effects related to the loss of rotational covariance
present in the light-front formalism. At the same time, the unique feature of
the suppression of the pair creation process is maintained. Therefore, a
physically meaningful one-body approximation, in which all the constituents are
on their mass-shells, can be consistently formulated in the limit q+ = 0.
Moreover, it is shown that the effects of the contact term arising from the
instantaneous propagation of the active constituent can be canceled out from
the triangle diagram by means of an appropriate choice of the off-shell
behavior of the bound state vertexes; this implies that in case of good
amplitudes the Feynman triangle diagram and the one-body light-front result
match exactly. The application of our covariant light-front approach to the
evaluation of the rho-meson elastic form factors is presented.Comment: corrected typos in the reference
Poincare Invariant Algebra From Instant to Light-Front Quantization
We present the Poincare algebra interpolating between instant and light-front
time quantizations. The angular momentum operators satisfying SU(2) algebra are
constructed in an arbitrary interpolation angle and shown to be identical to
the ordinary angular momentum and Leutwyler-Stern angular momentum in the
instant and light-front quantization limits, respectively. The exchange of the
dynamical role between the transverse angular mometum and the boost operators
is manifest in our newly constructed algebra.Comment: 21 pages, 3 figures, 1 tabl
Scaling law for the electromagnetic form factors of the proton
The violation of the scaling law for the electric and magnetic form factors
of the proton are examined within the cloudy bag model. The suppression of the
ratio of the electric and magnetic form factors is natural in the bag model.
The pion cloud plays a moderate role in understanding the recent data from
TJNAF.Comment: 8 pages, REVTeX, 2 figures include
A connection between inclusive semileptonic decays of bound and free heavy quarks
A relativistic constituent quark model, formulated on the light-front, is
used to derive a new parton approximation for the inclusive semileptonic decay
width of the B-meson. A simple connection between the decay rate of a free
heavy-quark and the one of a heavy-quark bound in a meson or in a baryon is
established. The main features of the new approach are the treatment of the
b-quark as an on-mass-shell particle and the inclusion of the effects arising
from the b-quark transverse motion in the B-meson. In a way conceptually
similar to the deep-inelastic scattering case, the B-meson inclusive width is
expressed as the integral of the free b-quark partial width multiplied by a
bound-state factor related to the b-quark distribution function in the B-meson.
The non-perturbative meson structure is described through various quark-model
wave functions, constructed via the Hamiltonian light-front formalism using as
input both relativized and non-relativistic potential models. A link between
spectroscopic quark models and the B-meson decay physics is obtained in this
way. Our predictions for the B -> X_c l nu_l and B -> X_u l nu_l decays are
used to extract the CKM parameters |V_cb| and |V_ub| from available inclusive
data. After averaging over the various quark models adopted and including
leading-order perturbative QCD corrections, we obtain |V_cb| = (43.0 +/-
0.7_exp +/- 1.8_th) 10^-3 and |V_ub| = (3.83 +/- 0.48_exp +/- 0.14_th) 10^-3,
implying |V_ub / V_cb| = 0.089 +/- 0.011_exp +/- 0.005_th, in nice agreement
with existing predictions.Comment: revised version with pQCD corrections included, to appear in Physical
Review
Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project
The TT-PET collaboration is developing a PET scanner for small animals with
30 ps time-of-flight resolution and sub-millimetre 3D detection granularity.
The sensitive element of the scanner is a monolithic silicon pixel detector
based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for
the TT-PET was produced and tested in the laboratory and with minimum ionizing
particles. The electronics exhibit an equivalent noise charge below 600 e- RMS
and a pulse rise time of less than 2 ns, in accordance with the simulations.
The pixels with a capacitance of 0.8 pF were measured to have a detection
efficiency greater than 99% and, although in the absence of the
post-processing, a time resolution of approximately 200 ps
Comparison among Hamiltonian light-front formalisms at q+ = 0 and q+ <> 0: space-like elastic form factors of pseudoscalar and vector mesons
The electromagnetic elastic form factors of pseudoscalar and vector mesons
are analyzed for space-like momentum transfers in terms of relativistic quark
models based on the Hamiltonian light-front formalism elaborated in different
reference frames (q+ 0 and q+ 0). As far as the one-body approximation for
the electromagnetic current operator is concerned, it is shown that the
predictions of the light-front approach at q+=0 should be preferred,
particularly in case of light hadrons, because of: i) the relevant role played
by the Z-graph at q+ 0, and ii) the appropriate elimination of spurious
effects, related to the orientation of the null hyperplane where the
light-front wave function is defined.Comment: version to appear in Phys. Rev. C. No change in the results and in
the conclusion
The nature and evolution of Nova Cygni 2006
AIMS: Nova Cyg 2006 has been intensively observed throughout its full
outburst. We investigate the energetics and evolution of the central source and
of the expanding ejecta, their chemical abundances and ionization structure,
and the formation of dust. METHOD: We recorded low, medium, and/or
high-resolution spectra (calibrated into accurate absolute fluxes) on 39
nights, along with 2353 photometric UBVRcIc measures on 313 nights, and
complemented them with IR data from the literature. RESULTS: The nova displayed
initially the normal photometric and spectroscopic evolution of a fast nova of
the FeII-type. Pre-maximum, principal, diffuse-enhanced, and Orion absorption
systems developed in a normal way. After the initial outburst, the nova
progressively slowed its fading pace until the decline reversed and a second
maximum was reached (eight months later), accompanied by large spectroscopic
changes. Following the rapid decline from second maximum, the nova finally
entered the nebular phase and formed optically thin dust. We computed the
amount of formed dust and performed a photo-ionization analysis of the
emission-line spectrum during the nebular phase, which showed a strong
enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement
with theoretical predictions for the estimated 1.0 Msun white dwarf in Nova Cyg
2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are
discussed.Comment: in press in Astronomy and Astrophysic
Instanton Contribution to the Pion Electro-Magnetic Formfactor at Q^2 > 1 GeV^2
We study the effects of instantons on the charged pion electro-magnetic
formfactor at intermediate momenta. In the Single Instanton Approximation
(SIA), we predict the pion formfactor in the kinematic region Q^2=2-15 GeV^2.
By developing the calculation in a mixed time-momentum representation, it is
possible to maximally reduce the model dependence and to calculate the
formfactor directly. We find the intriguing result that the SIA calculation
coincides with the vector dominance monopole form, up to surprisingly high
momentum transfer Q^2~10 GeV^2. This suggests that vector dominance for the
pion holds beyond low energy nuclear physics.Comment: 8 pages, 5 figures, minor revision
Electroexcitation of the Roper resonance from CLAS data
The helicity amplitudes of the electroexcitation of the Roper resonance on
proton are extracted at 1.7 < Q2 < 4.2 GeV2 from recent high precision
JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for
pi+ electroproduction on protons. The analysis is made using two approaches,
dispersion relations and unitary isobar model, which give consistent results.
It is found that the transverse helicity amplitude for the gamma* p -->
P11(1440) transition, which is large and negative at Q2=0, becomes large and
positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity
amplitude, that was previously found from CLAS data as large and positive at
Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of
P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this
resonance as a first radial excitation of the 3q ground state.Comment: 3 pages, 2 figures, Talk on the Workshop on "The Physics of Excited
Nucleons", Bonn, Germany, October 200
- …