3,597 research outputs found

    Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness

    Get PDF
    The choice of model design for decision analytic models in cost-effectiveness analysis has been the subject of discussion. The current work addresses this issue by noting that, when time is to be explicitly modelled, we need to represent phenomena occurring in continuous time. Multistate models evaluated in continuous time might be used but closed form solutions of expected time in each state may not exist or may be difficult to obtain. Two approximations can then be used for costeffectiveness estimation: (1) simulation models, where continuous time estimates are obtained through Monte Carlo simulation, and (2) discretized models. This work draws recommendations on their use by showing that, when these alternative models can be applied, it is preferable to implement a cohort discretized model than a simulation model. Whilst the bias from the first can be minimized by reducing the cycle length, the second is inherently stochastic. Even though specialized literature advocates this framework, the current practice in economic evaluation is to define clinically meaningful cycle lengths for discretized models, disregarding potential biases.

    Hydrodynamical Models of Outflow Collimation in YSOs

    Full text link
    We explore the physics of time-dependent hydrodynamic collimation of jets from Young Stellar Objects (YSOs). Using parameters appropriate to YSOs we have carried out high resolution hydrodynamic simulations modeling the interaction of a central wind with an environment characterized by a moderate opening angle toroidal density distribution. The results show that the the wind/environment interaction produces strongly collimated supersonic jets. The jet is composed of shocked wind gas. Using analytical models of wind blown bubble evolution we show that the scenario studied here should be applicable to YSOs and can, in principle, initiate collimation on the correct scales (R ~ 100 AU). The simulations reveal a number of time-dependent non-linear features not anticipated in previous analytical studies including: a prolate wind shock; a chimney of cold swept-up ambient material dragged into the bubble cavity; a plug of dense material between the jet and bow shocks. We find that the collimation of the jet occurs through both de Laval nozzles and focusing of the wind via the prolate wind shock. Using an analytical model for shock focusing we demonstrate that a prolate wind shock can, by itself, produce highly collimated supersonic jets.Comment: Accepted by ApJ, 31 pages with 12 figures (3 JPEG's) now included, using aasms.sty, Also available in postscript via a gzipped tar file at ftp://s1.msi.umn.edu/pub/afrank/SFIC1/SFIC.tar.g

    Avaliação dos impactos da Tecnologia Acasalamento de Outono em Bovinos de Corte.

    Get PDF
    Identificação da tecnologia; Procedimentos metodológicos; Identificação dos impactos na cadeia produtiva; Impactos econômicos; Impactos sociais; Impactos ambientais; Avaliação integrada e comparativa dos impactos gerados; Custos para a geração da tecnologia; Ações sociais.bitstream/item/64239/1/DT89.pd

    The variability behavior of CoRoT M-giant Stars

    Full text link
    For 6 years the Convection, Rotation, and Planetary Transits (CoRoT) space mission has acquired photometric data from more than one hundred thousand point sources towards and directly opposite from the inner and outer regions of the Galaxy. The high temporal resolution of the CoRoT data combined with the wide time span of the observations has enabled the study of short and long time variations in unprecedented detail. From the initial sample of 2534 stars classified as M-giants in the CoRoT databasis, we selected 1428 targets that exhibit well defined variability, using visual inspection. The variability period and amplitude of C1 stars (stars having Teff < 4200 K) were computed using Lomb-Scargle and harmonic fit methods. The trends found in the V-I vs J-K color-color diagram are in agreement with standard empirical calibrations for M-giants. The sources located towards the inner regions of the Galaxy are distributed throughout the diagram while the majority of the stars towards the outer regions of the Galaxy are spread between the calibrations of M-giants and the predicted position for Carbon stars. The stars classified as supergiants follow a different sequence from the one found for giant stars. We also performed a KS test of the period and amplitude of stars towards the inner and outer regions of the Galaxy. We obtained a low probability that the two samples come from the same parent distribution. The observed behavior of the period-amplitude and period-Teff diagrams are, in general, in agreement with those found for Kepler sources and ground based photometry, with pulsation being the dominant cause responsible for the observed modulation. We also conclude that short-time variations on M-Giant stars do not exist orare very rare and the few cases we found are possibly related to biases or background stars.Comment: 11 pages, 6 figure

    Avaliação dos impactos da tecnologia: introdução assistida do gene Booroola em rebanhos ovinos.

    Get PDF
    Identificação da Tecnologia; Procedimentos Metodológicos; Identificação dos Impactos na Cadeia Produtiva; Impactos Econômicos; Impactos Sociais; Impactos Ambientais; Avaliação Integrada e Comparativa dos Impactos Gerados; Custos para a Geração da Tecnologia.bitstream/item/31976/1/DT-105online.pd

    An efficient ‘a priori’ model reduction for boundary element models

    Get PDF
    The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations

    Stellar parameters for stars of the CoRoT exoplanet field

    Full text link
    Aims:To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters (TeffT_{\rm{eff}}, log(g)\log \,(g), [Fe/H]\rm{[Fe/H]}, vmicv_{\rm{mic}}, vradv_{\rm{rad}}, vsin(i)v \sin \,(i), and A(Li)A(\rm{Li})) for a large sample of CoRoT targets. Results: We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, TeffT_{\rm eff}, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.Comment: 43 pages, 17 figures, accepted for publication in A&
    corecore