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Abstract 

The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain 
problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems 
remain today unbeatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model 
reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the 
number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the 
computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting 
functions, seems to be a key point to render efficient boundary element simulations. 
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1. Introduction 

The Boundary Element Method (BEM) is a discretisation 
technique for solving partial differential equations, which 
offers, for certain problems, important advantages over 
domain techniques such as the finite element method [1]. 
One of the most interesting features of the method is the 
much smaller system of equations generated (which results 
full populated), due to the fact that the degrees of freedom 
are related to the nodes associated with the boundary mesh. 
Thus, a considerable reduction in the computing time, 
mainly for 2D or 3D problems, is expected. The BEM is also 
well suited for solving problems defined in unbounded 
domains, as encountered in mechanics, aerodynamics or 
hydrodynamics. The terms 'boundary element' indicates 
that the domain boundary is partitioned into a series of 
elements over which the unknown function is approximated 
like in the finite element method. 

Despite the high CPU time reduction that can be 
achieved (despite the fact that the boundary models involve 
fully populated systems), some 3D problems remain today 
unbeatable because the extremely large number of degrees 
of freedom—dof—involved in the boundary description. To 
alleviate this drawback, one possibility lies in the use of a 
model reduction (based on the Karhunen-Loeve decompo­
sition—KLD—, also known as proper orthogonal decompo­
sition—POD—). Model reduction techniques proceed by 
approximating the problem solution using the most 
appropriate set of approximation functions, whose determi­
nation from the Karhunen-Loeve decomposition and the use 
of the Krylov subspaces related to the residual of the 
governing equations will be addressed later in this paper. 

Model reduction has been successfully applied in the 
finite element framework for modeling dynamic models of 
distributed parameters [2-6]. However, in these applications 
several direct problems must be solved to extract empirical 
functions that represent the system most efficiently. This set 
of empirical eigenfunctions is used as functional basis of the 
Galerkin procedure to lump the governing equation. Thus, 
for example, the resulting lumped parameter model can be 
used to obtain the solution when the boundary conditions 
are changing randomly. To avoid, these preliminary costly 
calculations, Ryckelynck proposed in [7] start the resolution 
process from any reduced basis, using the Krylov subspaces 



generated by the governing equation residual for enriching 
the approximation basis, at the same time that a proper 
orthogonal decomposition extracts relevant information in 
order to maintain the low order of the approximation basis. 
This technique was applied in [8] for solving kinetic theory 
models. 

However, a more 'philosophical' question can be 
addressed: if the reduced model makes use of a number of 
dof{n), lower than the initial one (N), one could expect that 
for computing the n degrees of freedom involved, the use of 
m weighting functions (N^> m> n) could be enough. Thus, 
Ryckelynck has proved that there is an appropriate choice of 
a reduced number of weighting functions able to solve the 
problem efficiently. He has called this technique 'a priori 
model hyper-reduction' [9]. In the framework of the BEM, 
the reduction in the number of weighting functions seems to 
be essential, because in this technique the more important 
part of the CPU time is spent in the construction of the 
discrete system of equations. 

In the present work, we will propose an efficient model 
reduction, especially well adapted for treating boundary 
element models. For the sake of simplicity, we will consider 
a potential problem defined in a 2D unbounded domain. The 
capabilities of both the reduced order modeling and the 
boundary element method will be outlined. 

1.1. Boundary element discretization of a potential problem 

We consider the potential function u verifying the 
following governing PDE 

Aw = 0 inJ2 (1) 

as well as the: 

• Essential boundary conditions: u = u on T\ 
• Natural boundary conditions: q = du/dn = q on T2 

where the domain boundary r results r = Tj + T2. 
The weighed residual expression related to the previous 

problem is 

A.uu* dQ (q — q)u* df — (u — u)q* df (2) 

the unknowns, Eq. (3) takes the final form 

AX=F (4) 

where the size of A is NXN. 

1.2. The Karhunen-Loeve (KL) decomposition 

We assume that the evolution of a certain field is known 
u(x, i). In practical applications this field is known in a 
discrete form, that is, it is known at the nodes of a spatial 
mesh and for some times u(xt, f) = wf- We can also write 
up(x) = u(x,t = pht); V p e [ l , . . . , P ] . The main idea of the 
KL decomposition is how obtain the most typical or 
characteristic structure 0(x) among these uP(x). This 
is equivalent to obtain a function 0(x) maximizing a 
defined by 
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The maximisation leads to 
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where 4>(x) denotes the variation of <fi(x). Eq. (6) can be 
rewritten in the form 
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Introducing a vector notation, Eq. (7) takes the following 
matrix form 

<fi k<p = cap <p; V <fi =>k(f) = cap (8) 

which integrating by parts, introducing the fundamental 
solution as weighting function, assuming the interpolation 
of u on the domain boundary defined from Af nodal values, 
and performing the resulting integrals numerically (see [1] 
for more details concerning the standard discretization 
procedure) it results 

HU =GQ (3) 

where U contains the nodal potentials and Q their normal 
derivatives. Effectively, at the nodes located on Tj the 
potential is known, being its normal derivative known at 
the nodes located on T2. Grouping at the left member 

where the eigenvectors do not depend on time, i.e. 0(x). The 
two points correlation matrix k is given by 

P=p 
kiJ = E uP(X-i)uP(Xj) 

p=\ 
(9) 

whose matrix form results 

k 
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which is symmetric and positive definite. 



If we define the matrix Q containing the discrete field 
history: 

(u\ 
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is easy to verify that the matrix fe in Eq. (9) results 

where the diagonal components are given by 
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Thus, the functions defining the most characteristic 
structure of up(x) are the eigenfunctions ^ (x) = 4>k 

associated with the highest eigenvalues. 

2. 'A posteriori' reduced modeling 

2.1. Constructing the reduced model 

If some direct simulations have been carried out 
previously, we can determine u{xhf) = K?, V i^[l,...,N], 
V pG [1,...,P], and from that, the n eigenvectors related to 
the eigenvalues greater than an arbitrarily threshold value 
small enough. Thus, with the eigenvalues assumed ordered, 
if a£>10~ a.\, V fee [1,...,«], (a.\ being the highest 
eigenvalue), we will consider the n eigenvectors defined by 
their nodal values: 0̂ . = 0/tfe), V i^[l,...,N], V 
fee[l,...,w] 

Now, we can try to use these n eigenvectors for 
approximating the solution of a problem slightly different 
to the one that has served to define u(xh f) = uf?. For this 
purpose we need to define the matrix B 

B 
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For the sake of simplicity, we consider, from now on, that 
the linear system (4) contains all the nodal potentials as 
unknowns, i.e. X = U. Thus we could write 

£ = £&& = ££ 
i= i 

from which 

AU = F^ABZ = F 

(15) 

(16) 

and multiplying both terms by B it results 

BTABZ, =BTF (17) 

which proves that the final system of equations is of low 
order, i.e. the size of BTA B is nXn, with n^CN, and the 
size of both £ and BTF is n X l . 

2.2. Alleviating the discrete system construction 

Despite that Eq. (17) notices the reduction accomplished 
in the size of the linear system of equations that must solved 
at each iteration, in the boundary element method the 
construction of matrix A is expensive from a computing 
time point of view. Tolilleviate the considerable compu­
tational efforts needed in the construction of A we suggest to 
reduce the number of test functions used iriThe variational 
formulation weighting, in the framework of the hyper-
reduction proposed by Ryckelynck in [9]. Several criteria 
exist for selecting these integration functions [9]. When the 
problem solution is smooth enough, the use of m~3n 
weighting functions (being n the number of unknowns 
involved in the reduced model) provides very accurate 
results. 

(Bred)VedB<: = (Bled)TF (18) 

where the reduced matrix Aled is mXN; and the reduced 
matrix Bled(mXn) is computed from the truncated 
eigenvectors. 

3. Reduced model adaptativity: an 'a priori' model 
reduction approach 

In order to compute reduced model solutions without an 
'a priori' knowledge, Ryckelynck proposed [7] to start with 
a low order approximation basis, using some simple 
functions (e.g. the initial condition in transient problems) 
or using the eigenvectors of a 'similar' problem previously 
solved. Now, we note by B^ the approximation basis that 
has been updated r times.^We compute S time steps of the 
evolution problem using the reduced model (17) (or (18) if 
the hyper reduction is considered) without changing the 
present approximation basis B(f\ After each S time steps the 
linear system (16) is assembled, and the residual R is then 
evaluated: 

R=AU-F =AB(r)Z(r) ~F (19) 

If the norm of the residual is small enough, ||/\'|| < e, with 
e a threshold value small enough, we can continue for other 
S time steps using the same approximation basis B(r\ and 
the problem solution at this step Q^ stocked (related to the 
approximation basis B^ at the time step pS). On the 
contrary, if the residuaTnorm is too large, ||/\'|| < e, we need 
to enrich the approximation basis and compute again the last 
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S steps. This enrichment is built using some Krylov's 
subspaces {R,AR,A2R,...}, which are added to the most 
representative information extracted from the previous 
solutions £v! (with the integer q<p), as well as from the 
solutions of 'a similar' problem (if it exists) up to the current 
time Klilms (t—P)- In b° t r i c a s e s the superscript indicates 
that these reduced order solutions are expressed in the 
basis B(rK This information is extracted by applying the 

Karhunen-Loeve decomposition to £^ and K^ats^l^P'^ 
Vf > p), whose most representative eigenvectors define the 
matrix V. Then the evolution process is restarted for 
computing again the last S steps, using the enriched basis 
defined by: B(r+1) = {B(r)V^,R,AR,A2R} (we consider 
usually only the first three Krylov's subspaces). After 
each reduced basis modification, both the previous solutions 
and the ones related to the similar problem (when they exist) 
are projected into the new basis. Thus, one can write: 

£<'+!> = KB<r+1YBlr+1)r1Blr+lfBlr)Klr) (20) 

Remark. The application of the Karhunen-Loeve decompo­
sition to the reduced solutions instead to the nodal 
description has two advantages: (i) the eigenvalue problem 
has a lower dimension, and (ii) as the functions in B verify 
the problem boundary conditions, then any low order 
solution £ determines a complete solution B'C, satisfying 
these boundary conditions. — 

4. Numerical example 

A potential problem defined in an unbounded domain is 
simulated, which consists of two cylinders moving as 
indicated in Fig. 1. The upper cylinder moves with a 
velocity of v along the x-axis meanwhile the lower cylinder 
remains at rest. If we assume that an inviscid and 
incompressible fluid occupies the unbounded domain Q, 
and that no vorticity is generated by discontinuities or by the 
boundary, the fluid velocity can be expressed from the 
gradient of a certain potential function u. The normal 
derivative of the potential is prescribed on the cylinders 
boundaries to guarantee that the fluid does not penetrate the 
cylinders, that is q = du/dn = v -n, being n the unit outward 
vector defined on the cylinder surface and v the cylinder 
translation velocity. Thus, the problem can be defined from: 

' Aw = 0 in Q 

du 
< q=-^ = Y-n on rupper (21) 

du 
1=-^- = 0 ° n riower 

^ an 
where rupper and -Tiower denote the surface of the upper and 
lower cylinders, respectively. 

This problem is solved firstly for a certain distance 
between both cylinders greater than d' using 25 time steps to 

Fig. 1. Definition of the problem geometry. 

cover the approximation and moving away stages. The 
approximation is performed using 300 nodes, which implies 
the same number of degrees of freedom. A direct problem is 
solved at each time step, from which the potential on each 
cylindrical surface is determined, defining the matrix Q 
containing the discreet representation of these 25 solutions 
according to Eq. (11). From the solution of the associated 
eigenvalue problem (8) the most representative eigenvectors 
can be derived (those related to the eigenvalues greater than 
10_ a{). Fig. 2 depicts the three most characteristic 
functions (after normalization), where the potential is 
represented on the surfaces. Fig. 3 shows the evolution of 
the weight of each one of these functions during the 
approximation and moving away stages, that is the 
evolution of the degrees of freedom of the reduced 
approximation basis. We can notice that the first eigenfunc-
tion is the most representative, and that only the first three 
eigenfunctions are required to describe accurately the 
evolution of the solution during these 25 time steps. Now, 
we consider the problem, where the distance between both 
cylinders is reduced to d' (see Fig. 1). Moreover, the 
approximation and moving away stages will be computed 
using 227 time steps instead of the 25 ones used to analyze 
the similar problem just described. Due to the potential 
smoothness on both cylinder surfaces, we consider only 3xn 
weighting functions (each one related to a certain node), 
where n denotes the number of degrees of freedom in the 
reduced approximation basis. For sharper solutions the 
determination of the most appropriate weighting functions 
requires a deeper analysis [9]. 

In this case, the solution is performed starting from the 
reduced basis (containing the three eigenfunctions depicted 
in Fig. 2) obtained from the similar problem previously 
computed. After each 10 time steps the quality of the 
solution is checked, and when a residual higher than a 
threshold value is obtained, the basis is enriched from the 
three first Krylov's subspaces as described in Section 3. The 
use of this enrichment in tandem with the Karhunen-Loeve 
decomposition to extract the relevant information from the 
previous history and from the 'future' solution of the similar 
problem-when it exists-(according to the scheme presented 
in Section 3) allows to maintain the low order of 
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Fig. 3. Evolution of the weight of each eigenfunction in the solution (degree 
of freedom in the reduced approximation basis) during the approximation 
and moving away stages. 

the approximation basis. Fig. 4 compares the evolution of 
the computed potential at a certain node using the full model 
(standard boundary element model)—continuous curve— 
with the one computed using the reduced approximation 
basis which contains less than 15 approximation functions 
circles-. As it can be noticed in this figure the quality of the 
low order solution is checked after each 10-time steps (blue 
circles). Moreover, the reduction in the number of weighting 
functions alleviates significantly the computing time. In the 
particular case analyzed here, the problem can be solved 
very accurately using only 15 degrees of freedom with an 
error lower than 0.1 per cent. 

5. Conclusions 

The reduction model strategy proposed in this paper, 
which combines a model reduction based on the Karhunen-
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Fig. 4. Evolution of the potential at a certain node. Comparison between the 
full boundary element solution and the one obtained using a reduced 
approximation basis containing less than 15 degrees of freedom. 



Loeve decomposition with approximation basis enrichment, 
allows to accurate and fast resolution of boundary element 
models. Moreover, the CPU time is drastically reduced, as 
proved in [9], by using the concept of hyper-reduction, 
which lies in the use of a reduced number of weighting 
functions to determine the degrees of freedom involved by 
the reduced order approximation. The numerical example 
treated, despite of its simplicity, proves the potentiality of 
this numerical technique. The extension of this technique 
for solving models involving time derivatives as well as 
moving domains is a work in progress. 
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