9,917 research outputs found
Phenomenology Tools on Cloud Infrastructures using OpenStack
We present a new environment for computations in particle physics
phenomenology employing recent developments in cloud computing. On this
environment users can create and manage "virtual" machines on which the
phenomenology codes/tools can be deployed easily in an automated way. We
analyze the performance of this environment based on "virtual" machines versus
the utilization of "real" physical hardware. In this way we provide a
qualitative result for the influence of the host operating system on the
performance of a representative set of applications for phenomenology
calculations.Comment: 25 pages, 12 figures; information on memory usage included, as well
as minor modifications. Version to appear in EPJ
Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells
In this work, the capability of primary, monocyte-derived dendritic cells
(DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a
strategy to induce selective cell death in these MNP-loaded DCs using external
alternating magnetic fields (AMFs) is reported. No significant decrease in the
cell viability of MNP-loaded DCs, compared to the control samples, was observed
after five days of culture. The amount of MNPs incorporated into the cytoplasm
was measured by magnetometry, which confirmed that 1 to 5 pg of the particles
were uploaded per cell. The intracellular distribution of these MNPs, assessed
by transmission electron microscopy, was found to be primarily inside the
endosomic structures. These cells were then subjected to an AMF for 30 min, and
the viability of the blank DCs (i.e., without MNPs), which were used as control
samples, remained essentially unaffected. However, a remarkable decrease of
viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was
observed after the same 30 min exposure to an AMF. The same results were
obtained using MNPs having either positive (NH2+) or negative (COOH-) surface
functional groups. In spite of the massive cell death induced by application of
AMF to MNP-loaded DCs, the amount of incorporated magnetic particles did not
raise the temperature of the cell culture. Clear morphological changes at the
cell structure after magnetic field application were observed using scanning
electron microscopy. Therefore, local damage produced by the MNPs could be the
main mechanism for the selective cell death of MNP-loaded DCs under an AMF.
Based on the ability of these cells to evade the reticuloendothelial system,
these complexes combined with an AMF should be considered as a potentially
powerful tool for tumour therapy.Comment: In Press. 33 pages, 11 figure
Absorption, scattering and shadow by a noncommutative black hole with global monopole
In this paper, we investigate the process of massless scalar wave scattering
due to a noncommutative black hole with a global monopole through the partial
wave method. We computed the cross section of differential scattering and
absorption at the low frequency limit. We also calculated, at the high
frequency limit, the absorption and the shadow radius by the null geodesic
method. We showed that noncommutativity causes a reduction in the differential
scattering/absorption cross section and shadow radius, while the presence of
the global monopole has the effect of increasing the value of such quantities.
In the limit of the null mass parameter, we verify that the cross section of
differential scattering, absorption and shadow ray approach to a non-zero value
proportional to a minimum mass.Comment: 20 pages, 14 figure
Determining R-parity violating parameters from neutrino and LHC data
In supersymmetric models neutrino data can be explained by R-parity violating
operators which violate lepton number by one unit. The so called bilinear model
can account for the observed neutrino data and predicts at the same time
several decay properties of the lightest supersymmetric particle. In this paper
we discuss the expected precision to determine these parameters by combining
neutrino and LHC data and discuss the most important observables. We show that
one can expect a rather accurate determination of the underlying R-parity
parameters assuming mSUGRA relations between the R-parity conserving ones and
discuss briefly also the general MSSM as well as the expected accuracies in
case of a prospective e+ e- linear collider. An important observation is that
several parameters can only be determined up to relative signs or more
generally relative phases.Comment: 13 pages, 13 figure
Stochastic semiclassical fluctuations in Minkowski spacetime
The semiclassical Einstein-Langevin equations which describe the dynamics of
stochastic perturbations of the metric induced by quantum stress-energy
fluctuations of matter fields in a given state are considered on the background
of the ground state of semiclassical gravity, namely, Minkowski spacetime and a
scalar field in its vacuum state. The relevant equations are explicitly derived
for massless and massive fields arbitrarily coupled to the curvature. In doing
so, some semiclassical results, such as the expectation value of the
stress-energy tensor to linear order in the metric perturbations and particle
creation effects, are obtained. We then solve the equations and compute the
two-point correlation functions for the linearized Einstein tensor and for the
metric perturbations. In the conformal field case, explicit results are
obtained. These results hint that gravitational fluctuations in stochastic
semiclassical gravity have a ``non-perturbative'' behavior in some
characteristic correlation lengths.Comment: 28 pages, RevTeX, no figure
Anisotropic brane cosmologies with exponential potentials
We study Bianchi I type brane cosmologies with scalar matter self-interacting
through combinations of exponential potentials. Such models correspond in some
cases to inflationary universes. We discuss the conditions for accelerated
expansion to occur, and pay particular attention to the influence of extra
dimensions and anisotropy. Our results show that the associated effects evolve
in such a way that they become negligible in the late time limit, those related
to the anisotropy disappearing earlier. This study focuses mainly on single
field models, but we also consider a generalization yielding models with
multiple non-interacting fields and examine its features briefly. We conclude
that in the brane scenario, as happens in general relativity, an increase in
the number of fields assists inflation.Comment: 11 pages, 1 figur
- …