523 research outputs found

    Detection of new eruptions in the Magellanic Clouds LBVs R 40 and R 110

    Full text link
    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V9.2V \sim 9.2 in 2016, which is around 1.31.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R\,40 reached Teff=58006300T_{\mathrm{eff}} = 5800-6300~K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V9.9V \sim 9.9 mag in 2011, that is, around 1.01.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.20.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R\,110. We also discuss a possible post-red supergiant nature for both stars

    Physico-Chemical Properties Mediating Reproductive and Developmental Toxicity of Engineered Nanomaterials

    Get PDF
    With the increasing production of engineered nanomaterials (ENMs) exploited in many consumer products, a wider number of people is expected to be exposed to such materials in the near future, both in occupational and environmentalsettings. This has raised concerns about the possible implications on public health. In particular, very recently the scientific community has focused on the effect that ENMs might exert on the reproductive apparatus and on embryonic development. Indications that ENMs might have adverse effects on cells of the germ line and on the developing embryos have been reported. In the present minireview we will perform a critical analysis of the published work on reproductive and developmental toxicity of the most commonly used nanoparticles with a major focus on mammalian models. We will place emphasis on the main physico-chemical characteristics that can affect NP behaviour in biological systems, i.e. presence of contaminants and nanoparticle destabilization, size, dosage, presence of functional groups, influence of the solvent used for their suspension in biological media, aggregation/agglomeration, intrinsic chemical composition and protein corona/opsonisation. The importance of this specific field of nanotoxicology is documented by the rapidly increasing number of published papers registered in the last three years, which might be a consequence of the growing concerns on the possible interference of ENMs with reproductive ability and pregnancy outcome, in a time in which reproductive age has increased and the possibility to bear children appears reduced

    Crosswalking or jaywalking? the visualization of linked scientific and humanities data

    Get PDF
    A critical aspect of shared data is using an easily accessible interface that is interoperable across a wide range of heritage institutions. An innovative approach to heritage science, where data is generated about the materiality of heritage materials, is linking this data back to a visual rendering of the heritage material to begin a process of linked data and integration between science and humanities. Using the International Image Interoperability Framework (IIIF), the shared canvas data model is being expanded for integrating linked scientific analyses to this digital surrogate. There are challenges with this approach for spectral imaging data due to the additional required layers of metadata in the spectral, spatial and temporal modes, which need to be consistent, and persistent, across sets of canvases

    Characterisation of Hybrid Pixel Detectors with capacitive charge division

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+ e- linear collider, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells between the readout nodes has been developed to improve the single point resolution. The results of the characterisation of the first processed prototypes are reported.Comment: 5 pages, 2 figures, presented at LCWS2000, Linear Collider Workshop, October 24-28 2000, Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A. Proceedings to be published by the American Institute of Physic

    Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.Comment: 5 pages, 1 figure, to appear in the Proceedings of the 9th Int. Workshop on Vertex Detectors, Lake Michigan MI (USA), September~200

    Misalignment factors to affect the fatigue of welded load-carrying joints

    Get PDF
    To assess the effects of misalignment on the weld fatigue, we present experimental fatigue test results of load- carrying cruciform joints which are subjected to axial variable amplitude loading. The welds were produced from steel AH36 grade and fatigue strength improved by high-frequently mechanical impact treatment. We identify several misalignment factors affecting the fatigue by considering the real and reference welded joint geometries. Our methodology includes proposals for the empirical calibration functions and local stress analyses by using the Structural Hot Spot Stress, Effective Notch Stress and Peak Stress Method. Additionally, we apply our methodology to other sixteen data sets which are extracted from the literature for load-carrying cruciform and butt welded joints subjected to constant amplitude loading. Finally, we present the resultant calibration functions with respect to corresponding fatigue test data

    An infrared diagnostic for magnetism in hot stars

    Full text link
    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields.Comment: 4 pages, accepted for publication in A&

    Experimental tests and fatigue strength assessment of a scotch yoke valve actuator

    Get PDF
    Abstract Aim of this work is the fatigue assessment of a main component, termed scotch yoke, of a valve actuator used for oil & gas, power and chemical industries, in order to comply with its heavy-duty applications. To do this, full-scale specimens of the scotch yoke made of structural steel have been fatigue tested under nominal axial loading. All specimens have been tested under stress-relieved conditions by adopting a nominal load ratio R=-1. After experimental tests, the fatigue crack paths have been analysed by means of liquid penetrant inspections. The fatigue strength class of the considered scotch yoke has been determined by statistically re-analysing the experimental results, expressed in terms of range of the nominal applied load, and it has been compared with the design condition required by the relevant European Standard, EN 15714-3/4. Finally, two methodologies for fatigue strength assessment of the considered scotch yokes have been proposed, which are based on experimental fatigue data derived from smooth or sharp V-notched specimens, respectively, made of the same yoke material. The assessment capability of the proposed methodologies has been evaluated and discussed by comparing theoretical estimations with the experimental fatigue results of the scotch yokes
    corecore