345 research outputs found

    Structural and biochemical characterization of a new type of lectin isolated from carp eggs.

    Get PDF
    A previously unidentified glycoprotein present in the eggs of the carp (Cyprinus carpio) was isolated and structurally characterized. The protein binds to a Sepharose 4B matrix and can be eluted with 0.4 M N-acetylglucosamine. The protein has an apparent molecular mass of 26686.3 Da. On the basis of gel-filtration chromatography, the protein appears to be present in solution as a monomer. The sequence of its 238 amino acids, the position of its four disulphide bridges and the composition of its single N-linked carbohydrate chain were determined. The lectin shows a very low agglutinating activity for human A-type erythrocytes and interacts with both Gram-positive and -negative bacteria. These latter interactions are inhibited by N-acetylglucosamine. A database search shows that its amino acid sequence is similar to that of the members of an invertebrate lectin family that includes tachylectin-1. Tachylectin-1 is present in the amoebocytes of the horseshoe crab, Tachypleus tridentatus, and plays a role in the innate defence system of this species. Homologous genes are also present in other fish, having 85% identity with a gene expressed in the oocytes of the crucian carp (Carassius auratus gibelio) and 78% identity with a gene in the cDNA library of the zebrafish (Danio rerio)

    Calorimetric analysis of ice onset temperature during cryoablation: a model approach to identify early predictors of effective applications

    Get PDF
    Aim of the present study is to analyze thermal events occurring during cryoablation. Different bovine liver samples underwent freezing cycles at different cooling rate (from 0.0075 to 25 K/min). Ice onset temperature and specific latent heat capacity of the ice formation process were measured according to differential scanning calorimetry signals. A computational model of the thermal events occurring during cryoablation was compiled using Neumann’s analytical solution. Latent heat (#1 = 139.8 ± 7.4 J/g, #2 = 147.8 ± 7.9 J/g, #3 = 159.0 ± 4.1 J/g) of all liver samples was independent of the ice onset temperature, but linearly dependent on the water content. Ice onset temperature was proportional to the logarithm of the cooling rate in the range 5 ÷ 25 K/min (#3a = − 12.2 °C, #3b = − 16.2 °C, #3c = − 6.6 °C at 5K/min; #3a = − 16.5 °C, #3b = − 19.3 °C, #3c = − 11.6 °C at 25 K/min). Ice onset temperature was associated with both the way in which the heat involved into the phase transition was delivered and with the thermal gradient inside the tissue. Ice onset temperature should be evaluated in the early phase of the ablation to tailor cryoenergy delivery. In order to obtain low ice trigger temperatures and consequent low ablation temperatures a high cooling rate is necessary

    Numerical and experimental analysis of labyrinth seals with rhomboidal cells

    Get PDF
    The labyrinth seals are devices commonly used in turbomachinery to reduce hot gas leakages through engine clearances, which adversely affect the gas turbine performance. For this reason, in the last decades, many in-depth analyses and optimization studies were carried out on this topic using experimental, analytical and numerical approaches. In this work, an innovative rhomboidal pattern is presented, obtained through Computational Fluid Dynamics (CFD) simulations, which is more dissipative than commonly used honeycomb cells. The experiments, performed using a Test Article that reproduces a stage and the next stator of a real low-pressure turbine suitably scaled, allowed to validate the numerical results in a situation that closely approximates the real one of use. The results obtained show that the leakages flow fraction of the total mass flow rate that bypasses the blade, which is 29.4% using a honeycomb pattern, is reduced to 27% with rhomboidal cells. The experimental results also made it possible to verify that the new pattern also behaves well from a thermal point of view, giving rise to temperature differences with respect to the honeycomb of less than 1%

    Pilot Study of a New Mandibular Advancement Device

    Get PDF
    This study was conducted to determine the efficacy of a customized mandibular advancement device (MAD) in the treatment of obstructive sleep apnea (OSA). Eight patients (M = 3; F = 5; mean age = 56.3 ± 9.4) with a diagnosis of OSA confirmed by polysomnography (PSG) were re-cruited on the basis of the following inclusion criteria: apnea-hypopnea index (AHI) > 5, age between 18 and 75 years, body mass index (BMI) < 25, and PSG data available at baseline (T0). All were treated with the new NOA® MAD by OrthoApnea (NOA® ) for at least 3 months; PSG with NOA in situ was performed after 3 months of treatment (T1). The following parameters were calculated at T0 and T1: AHI, supine AHI, oxygen desaturation index (ODI), percentage of recording time spent with oxygen saturation <90% (SpO2 < 90%), and mean oxygen desaturation (MeanSpO2%). Data were submitted for statistical analysis. The baseline values were AHI = 21.33 ± 14.79, supine AHI = 35.64 ± 12.80, ODI = 17.51 ± 13.5, SpO2 < 90% = 7.82 ± 17.08, and MeanSpO2% = 93.45 ± 1.86. Four patients had mild OSA (5 > AHI < 15), one moderate OSA (15 > AHI < 30), and three severe OSA (AHI > 30). After treatment with NOA®, statistically significant improvements in AHI (8.6 ± 4.21) and supine AHI (11.21 ± 7.26) were recorded. OrthoApnea NOA® could be an effective alternative in the treatment of OSA: the device improved the PSG parameters assessed

    Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Get PDF
    The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method) as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving) analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry

    The role of antioxidants in the interplay between oxidative stress and senescence

    Get PDF
    Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches

    A nucleotide insertion and frameshift cause albumin Kénitra, an extended and O-glycosylated mutant of human serum albumin with two additional disulfide bridges

    Get PDF
    Albumin Kenitra is a new type of genetic variant of human serum albumin that has been found in two members of a family of Sephardic Jews from Kenitra (Morocco). The slow-migrating variant and the normal protein were isolated by anion-exchange chromatography and, after treatment with CNBr, the digests were analyzed by two-dimensional electrophoresis in a polyacrylamide gel. The CNBr peptides of the variant were purified by reverse-phase high performance liquid chromatography and submitted to sequence analysis. Albumin Kenitra is peculiar because it has an elongated polypeptide chain, 601 residues instead of 585, and its sequence is modified beginning from residue 575. DNA structural studies showed that the variant is caused by a single-base insertion, an adenine at nucleotide position 15 970 in the genomic sequence, which leads to a frameshift with the subsequent translation to the first termination codon of exon 15. Mass spectrometric analyses revealed that the four additional cysteine residues of the variant form two new S-S bridges and showed that albumin Kenitra is partially O-glycosylated by a monosialylated HexHexNAc structure. This oligosaccharide chain has been located to Thr596 by amino-acid sequence analysis of the tryptic fragment 592-59
    • …
    corecore