25 research outputs found
FLAMARIQUE, LOURDES; CARBONELL, CLAUDIA (EDS.), La larga sombra de lo religioso. Secularización y resignificaciones, Biblioteca Nueva, Madrid, 2017, 384 pp. [RECENSIÓN]
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
The runaway binary LP 400-22 is leaving the Galaxy
We present optical spectroscopy, astrometry, radio and X-ray observations of the runaway binary LP 400-22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400-22 is significantly more distant (3σ lower limit of 840pc) than initially predicted. LP 400-22 has a tangential velocity in excessof 830 km s-1; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400-22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic Centre origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400-22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary.Instituto de Astrofísica de La Plat
Two millisecond pulsars discovered by the palfa survey and a shapiro delay measurement
We present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87ms, and PSR J1949+3106 has a period of 13.14ms and is in a 1.9day binary system with a massive companion. Their timing solutions, based on 4years of timing measurements with the Arecibo, Green Bank, Nançay, and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47+0.43-0.31 M⊙, the companion mass to be 0.85+0.14-0.11 M⊙, and the orbital inclination to be i = 79.9-1.9+1.6deg, where uncertainties correspond to ±1σ confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, will eventually provide very precise mass measurements for this system and a test of general relativity. © 2012 The American Astronomical Society. All rights reserved
The runaway binary LP 400-22 is leaving the Galaxy
We present optical spectroscopy, astrometry, radio and X-ray observations of the runaway binary LP 400-22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400-22 is significantly more distant (3σ lower limit of 840pc) than initially predicted. LP 400-22 has a tangential velocity in excessof 830 km s-1; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400-22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic Centre origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400-22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary.Instituto de Astrofísica de La Plat
PSR J1856+0245: Arecibo discovery of a young energetic pulsar coincident with the TeV g-RAY source HESS J1857+026
We present the discovery of the Vela-like radio pulsar J1856+0245 in the Arecibo PALFA survey. PSR J1856+0245 has a spin period of 81 ms, a characteristic age of 21 kyr, and a spin-down luminosity Ė p 4.6 x 10 36 ergs s-1. It is positionally coincident with the TeV γ-ray source HESS J1857+026, which has no other known counterparts. Young, energetic pulsars create wind nebulae, and more than a dozen pulsar wind nebulae have been associated with very high energy (100 GeV-100 TeV) γ-ray sources discovered with the HESS telescope. The γ-ray emission seen from HESS J1857+026 is potentially produced by a pulsar wind nebula powered by PSR J1856+0245; faint X-ray emission detected by ASCA at the pulsar\u27s position supports this hypothesis. The inferred γ-ray efficiency is εγ p Lγ/Ė p 3.1 % (1-10 TeV, for a distance of 9 kpc), comparable to that observed in similar associations. © 2008. The American Astronomical Society
Arecibo pulsar survey using ALPHA: Probing radio pulsar intermittency and transients
We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4 and 4.7 s. One of the new discoveries has a duty cycle of 0.01%, smaller than that of any other radio pulsar. We discuss the impact of selection effects on the detectability and classification of intermittent sources, and compare the efficiencies of periodicity and single-pulse (SP) searches for various pulsar classes. For some cases we find that the apparent intermittency is likely to be caused by off-axis detection or a short time window that selects only a few bright pulses and favors detection with our SP algorithm. In other cases, the intermittency appears to be intrinsic to the source. No transients were found with DMs large enough to require that they originate from sources outside our Galaxy. Accounting for the on-axis gain of the ALFA system, as well as the low gain but large solid-angle coverage of far-out sidelobes, we use the results of the survey so far to place limits on the amplitudes and event rates of transients of arbitrary origin. © 2009. The American Astronomical Society. All rights reserved.
Einstein@Home DISCOVERY of A PALFA MILLISECOND PULSAR in AN ECCENTRIC BINARY ORBIT
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 Mo and is most likely a white dwarf (WD). Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities e \u3c 0.001. However, four recently discovered binary MSPs have orbits with 0. 027 \u3c e \u3c 0.44; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are (a) initial evolution of the pulsar in a triple system which became dynamically unstable, (b) origin in an exchange encounter in an environment with high stellar density, (c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar WD, and (d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios
TIMING of 29 PULSARS DISCOVERED in the PALFA SURVEY
We report on the discovery and timing observations of 29 distant long-period pulsars found in the ongoing Arecibo L-band Feed Array pulsar survey. Following discovery with the Arecibo Telescope, confirmation and timing observations of these pulsars over several years at Jodrell Bank Observatory have yielded high-precision positions and measurements of rotation and radiation properties. We have used multi-frequency data to measure the interstellar scattering properties of some of these pulsars. Most of the pulsars have properties that mirror those of the previously known pulsar population, although four show some notable characteristics. PSRs J1907+0631 and J1925+1720 are young and are associated with supernova remnants or plerionic nebulae: J1907+0631 lies close to the center of SNR G40.5-0.5, while J1925+1720 is coincident with a high-energy Fermi γ-ray source. One pulsar, J1932+1500, is in a surprisingly eccentric, 199 day binary orbit with a companion having a minimum mass of 0.33 M o. Several of the sources exhibit timing noise, and two, PSRs J0611+1436 and J1907+0631, have both suffered large glitches, but with very different post-glitch rotation properties. In particular, the rotational period of PSR J0611+1436 will not recover to its pre-glitch value for about 12 years, a far greater recovery timescale than seen following any other large glitches
Arecibo PALFA survey and Einstein@Home: Binary pulsar discovery by volunteer computing
We report the discovery of the 20.7ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4hr, a projected orbital radius of 2.8lt-s, and a mass function of f = 0.15 M ⊙ by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2σ upper limit e ≲ 1.7 × 10 -3 . The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 M ⊙ , assuming a pulsar mass of 1.4 M ⊙ . Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star. © 2011. The American Astronomical Society. All rights reserved
