982 research outputs found

    Current perspective - Trastuzumab

    Get PDF
    This article will review the available clinical data on the efficacy of trastuzumab in the treatment of both early advanced breast cancer

    Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates

    Get PDF
    Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a series of complex eclipses in May 2007, interpreted as the transit of a giant Hill sphere filling debris ring system around a secondary companion, J1407b. No other eclipses have since been detected, although other measurements have constrained but not uniquely determined the orbital period of J1407b. Finding another eclipse towards J1407 will help determine the orbital period of the system, the geometry of the proposed ring system and enable planning of further observations to characterize the material within these putative rings. Aims. We carry out a search for other eclipses in photometric data of J1407 with the aim of constraining the orbital period of J1407b. Methods. We present photometry from archival photographic plates from the Harvard DASCH survey, and Bamberg and Sonneberg Observatories, in order to place additional constraints on the orbital period of J1407b by searching for other dimming and eclipse events. Using a visual inspection of all 387 plates and a period-folding algorithm we performed a search for other eclipses in these data sets. Results. We find no other deep eclipses in the data spanning from 1890 to 1990, nor in recent time-series photometry from 2012-2018. Conclusions. We rule out a large fraction of putative orbital periods for J1407b from 5 to 20 years. These limits are still marginally consistent with a large Hill sphere filling ring system surrounding a brown dwarf companion in a bound elliptical orbit about J1407. Issues with the stability of any rings combined with the lack of detection of another eclipse, suggests that J1407b may not be bound to J1407.Comment: 8 pages, 3 tables, 4 figures, accepted for publication in A&A. LaTeX files of the paper, scripts for the figures, and a minimal working FPA can be found under https://github.com/robinmentel/Constraining-Period

    Parsimonious modeling of skeletal muscle perfusion: connecting the stretched exponential and fractional Fickian diffusion

    Get PDF
    Purpose To develop an anomalous (non-Gaussian) diffusion model for characterizing skeletal muscle perfusion using multi-b-value DWI.Theory and methods Fick's first law was extended for describing tissue perfusion as anomalous superdiffusion, which is non-Gaussian diffusion exhibiting greater particle spread than that of the Gaussian case. This was accomplished using a space-fractional derivative that gives rise to a power-law relationship between mean squared displacement and time, and produces a stretched exponential signal decay as a function of b-value. Numerical simulations were used to estimate parameter errors under in vivo conditions, and examine the effect of limited SNR and residual fat signal. Stretched exponential DWI parameters, alpha and D, were measured in thigh muscles of 4 healthy volunteers at rest and following in-magnet exercise. These parameters were related to a stable distribution of jump-length probabilities and used to estimate microvascular volume fractions.Results Numerical simulations showed low dispersion in parameter estimates within 1.5% and 1%, and bias errors within 3% and 10%, for alpha and D, respectively. Superdiffusion was observed in resting muscle, and to a greater degree following exercise. Resting microvascular volume fraction was between 0.0067 and 0.0139 and increased between 2.2-fold and 4.7-fold following exercise.Conclusions This model captures superdiffusive molecular motions consistent with perfusion, using a parsimonious representation of the DWI signal, providing approximations of microvascular volume fraction comparable with histological estimates. This signal model demonstrates low parameter-estimation errors, and therefore holds potential for a wide range of applications in skeletal muscle and elsewhere in the body.Radiolog

    The universal Glivenko-Cantelli property

    Full text link
    Let F be a separable uniformly bounded family of measurable functions on a standard measurable space, and let N_{[]}(F,\epsilon,\mu) be the smallest number of \epsilon-brackets in L^1(\mu) needed to cover F. The following are equivalent: 1. F is a universal Glivenko-Cantelli class. 2. N_{[]}(F,\epsilon,\mu)0 and every probability measure \mu. 3. F is totally bounded in L^1(\mu) for every probability measure \mu. 4. F does not contain a Boolean \sigma-independent sequence. It follows that universal Glivenko-Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.Comment: 26 page

    Validation of a commercially available markerless motion-capture system for trunk and lower extremity kinematics during a jump-landing assessment

    Get PDF
    Context: Field-based, portable motion-capture systems can be used to help identify individuals at greater risk of lower extremity injury. Microsoft Kinect-based markerless motion-capture systems meet these requirements; however, until recently, these systems were generally not automated, required substantial data postprocessing, and were not commercially available. Objective: To validate the kinematic measures of a commercially available markerless motion-capture system. Design: Descriptive laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 20 healthy, physically active university students (10 males, 10 females; age ¼ 20.50 6 2.78 years, height ¼ 170.36 6 9.82 cm, mass ¼ 68.38 6 10.07 kg, body mass index ¼ 23.50 6 2.40 kg/m2). Intervention(s): Participants completed 5 jump-landing trials. Kinematic data were simultaneously recorded using Kinect-based markerless and stereophotogrammetric motion-capture systems. Main Outcome Measure(s): Sagittal- and frontal-plane trunk, hip-joint, and knee-joint angles were identified at initial ground contact of the jump landing (IC), for the maximum joint angle during the landing phase of the initial landing (MAX), and for the joint-angle displacement from IC to MAX (DSP). Outliers were removed, and data were averaged across trials. We used intraclass correlation coefficients (ICCs [2,1]) to assess intersystem reliability and the paired-samples t test to examine mean differences (a < .05). Results: Agreement existed between the systems (ICC range ¼1.52 to 0.96; ICC average ¼ 0.58), with 75.00% (n ¼ 24/ 32) of the measures being validated (P < .05). Agreement was better for sagittal- (ICC average ¼ 0.84) than frontal- (ICC average ¼ 0.35) plane measures. Agreement was best for MAX (ICC average ¼ 0.77) compared with IC (ICC average ¼ 0.56) and DSP (ICC average ¼ 0.41) measures. Pairwise comparisons identified differences for 18.75% (6/32) of the measures. Fewer differences were observed for sagittal- (0.00%; 0/15) than for frontal- (35.29%; 6/17) plane measures. Between-systems differences were equivalent for MAX (18.18%; 2/11), DSP (18.18%; 2/11), and IC (20.00%; 2/10) measures. The markerless system underestimated sagittal-plane measures (86.67%; 13/15) and overestimated frontal-plane measures (76.47%; 13/ 17). No trends were observed for overestimating or underestimating IC, MAX, or DSP measures. Conclusions: Moderate agreement existed between markerless and stereophotogrammetric motion-capture systems. Better agreement existed for larger (eg, sagittal-plane, MAX) than for smaller (eg, frontal-plane, IC) joint angles. The DSP angles had the worst agreement. Markerless motion-capture systems may help clinicians identify individuals at greater risk of lower extremity injury

    Magnetar outbursts: an observational review

    Full text link
    Transient outbursts from magnetars have shown to be a key property of their emission, and one of the main way to discover new sources of this class. From the discovery of the first transient event around 2003, we now count about a dozen of outbursts, which increased the number of these strongly magnetic neutron stars by a third in six years. Magnetar outbursts might involve their multi-band emission resulting in an increased activity from radio to hard X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with respect to the quiescent level. A connected X-ray spectral evolution is also often observed, with a spectral softening during the outburst decay. The flux decay times vary a lot from source to source, ranging from a few weeks to several years, as also the decay law which can be exponential-like, a power-law or even multiple power-laws can be required to model the flux decrease. We review here on the latest observational results on the multi-band emission of magnetars, and summarize one by one all the transient events which could be studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395 "High-energy emission from pulsars and their systems", proceeding of the Sant Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January 201

    The purpose of mess in action research: building rigour though a messy turn

    Get PDF
    Mess and rigour might appear to be strange bedfellows. This paper argues that the purpose of mess is to facilitate a turn towards new constructions of knowing that lead to transformation in practice (an action turn). Engaging in action research - research that can disturb both individual and communally held notions of knowledge for practice - will be messy. Investigations into the 'messy area', the interface between the known and the nearly known, between knowledge in use and tacit knowledge as yet to be useful, reveal the 'messy area' as a vital element for seeing, disrupting, analysing, learning, knowing and changing. It is the place where long-held views shaped by professional knowledge, practical judgement, experience and intuition are seen through other lenses. It is here that reframing takes place and new knowing, which has both theoretical and practical significance, arises: a 'messy turn' takes place

    Trends in movement quality in US Military Academy cadets 2005-17: A JUMP-ACL study

    Get PDF
    Objectives: This study sought to determine if there were significant trends in lower extremity movement quality, as assessed by the Landing Error Scoring System (LESS) scores and plane-specific LESS subscales, across in 12 recent cohorts of incoming USMA cadets. Design: prospective cohort study. Setting: United States Military Academy. Participants: 7,591. Main outcome measures: Landing Error Scoring System (LESS) scores, adjusted for sex and ACL injury history. Results: Statistically significant inverse trends were found between total LESS score and year (p < 0.01) and sagittal plane subscale and year (p < 0.01). A statistically significant direct trend was found for the frontal/transverse plane subscale and year (p < 0.01). However, each of these trends had a small associated effect size, and none were considered clinically meaningful. Conclusions: There were no meaningful changes in lower extremity movement quality in incoming US Military Academy cadets between 2005 and 2017

    Lower Extremity Musculoskeletal Injury in US Military Academy Cadet Basic Training: A Survival Analysis Evaluating Sex, History of Injury, and Body Mass Index

    Get PDF
    Background: Injury incidence for physically active populations with a high volume of physical load can exceed 79%. There is little existing research focused on timing of injury and how that timing differs based on certain risk factors. Purpose/Hypothesis: The purpose of this study was to report both the incidence and timing of lower extremity injuries during cadet basic training. We hypothesized that women, those with a history of injury, and those in underweight and obese body mass index (BMI) categories would sustain lower extremity musculoskeletal injury earlier in the training period than men, those without injury history, and those in the normal-weight BMI category. Study Design: Cohort study; Level of evidence, 2. Methods: Cadets from the class of 2022, arriving in 2018, served as the study population. Baseline information on sex and injury history was collected via questionnaire, and BMI was calculated from height and weight taken during week 1 at the United States Military Academy. Categories were underweight (BMI <20), middleweight (20-29.99), and obese (≥30). Injury surveillance was performed over the first 60 days of training via electronic medical record review and monitoring. Kaplan-Meier survival curves were used to estimate group differences in time to the first musculoskeletal injury. Cox proportional hazard regression was used to estimate hazard ratios (HRs). Results: A total of 595 cadets participated. The cohort was 76.8% male, with 29.9% reporting previous injury history and 93.3% having a BMI between 20 and 30. Overall, 16.3% of cadets (12.3% of male cadets and 29.7% of female cadets) experienced an injury during the follow-up period. Women experienced significantly greater incident injury than did men (P <.001). Separation of survival curves comparing the sexes and injury history occurred at weeks 3 and 4, respectively. Hazards for first musculoskeletal injury were significantly greater for women versus men (HR, 2.63; 95% CI, 1.76-3.94) and for those who reported a history of injury versus no injury history (HR, 1.76; 95% CI, 1.18-2.64). No differences were observed between BMI categories. Conclusion: Female cadets and those reporting previous musculoskeletal injury demonstrated a greater hazard of musculoskeletal injury during cadet basic training. This study did not observe an association between BMI and injury
    corecore