216 research outputs found

    Prediction of haplotypes for ungenotyped animals and its effect on marker-assisted breeding value estimation

    Get PDF
    Background: In livestock populations, missing genotypes on a large proportion of animals are a major problem to implement the estimation of marker-assisted breeding values using haplotypes. The objective of this article is to develop a method to predict haplotypes of animals that are not genotyped using mixed model equations and to investigate the effect of using these predicted haplotypes on the accuracy of marker-assisted breeding value estimation. Methods: For genotyped animals, haplotypes were determined and for each animal the number of haplotype copies (nhc) was counted, i.e. 0, 1 or 2 copies. In a mixed model framework, nhc for each haplotype were predicted for ungenotyped animals as well as for genotyped animals using the additive genetic relationship matrix. The heritability of nhc was assumed to be 0.99, allowing for minor genotyping and haplotyping errors. The predicted nhc were subsequently used in marker-assisted breeding value estimation by applying random regression on these covariables. To evaluate the method, a population was simulated with one additive QTL and an additive polygenic genetic effect. The QTL was located in the middle of a haplotype based on SNP-markers. Results: The accuracy of predicted haplotype copies for ungenotyped animals ranged between 0.59 and 0.64 depending on haplotype length. Because powerful BLUP-software was used, the method was computationally very efficient. The accuracy of total EBV increased for genotyped animals when marker-assisted breeding value estimation was compared with conventional breeding value estimation, but for ungenotyped animals the increase was marginal unless the heritability was smaller than 0.1. Haplotypes based on four markers yielded the highest accuracies and when only the nearest left marker was used, it yielded the lowest accuracy. The accuracy increased with increasing marker density. Accuracy of the total EBV approached that of gene-assisted BLUP when 4-marker haplotypes were used with a distance of 0.1 cM between the markers. Conclusions: The proposed method is computationally very efficient and suitable for marker-assisted breeding value estimation in large livestock populations including effects of a number of known QTL. Marker-assisted breeding value estimation using predicted haplotypes increases accuracy especially for traits with low heritabilit

    Including copy number variation in association studies to predict genotypic values

    Get PDF
    The objective of this study was to investigate, both empirically and deterministically, the ability to explain genetic variation resulting from a copy number polymorphism (CNP) by including the CNP, either by its genotype or by a continuous derivation thereof, alone or together with a nearby single nucleotide polymorphism (SNP) in the model. This continuous measure of a CNP genotype could be a raw hybridization measurement, or a predicted CNP genotype. Results from simulations showed that the linkage disequilibrium (LD) between an SNP and CNP was lower than LD between two SNPs, due to the higher mutation rate at the CNP loci. The model R2 values from analysing the simulated data were very similar to the R2 values predicted with the deterministic formulae. Under the assumption that x copies at a CNP locus lead to the effect of x times the effect of 1 copy, including a continuous measure of a CNP locus in the model together with the genotype of a nearby SNP increased power to explain variation at the CNP locus, even when the continuous measure explained only 15% of the variation at the CNP locus

    Right-hand-side updating for fast computing of genomic breeding values

    Get PDF
    Since both the number of SNPs (single nucleotide polymorphisms) used in genomic prediction and the number of individuals used in training datasets are rapidly increasing, there is an increasing need to improve the efficiency of genomic prediction models in terms of computing time and memory (RAM) required

    Estimating genomic breeding values from the QTL-MAS Workshop Data using a single SNP and haplotype/IBD approach

    Get PDF
    Two models that estimated genomic estimated breeding values (EBVs) were applied: one used constructed haplotypes (based on alleles of 20 markers) and IBD matrices, another used single SNP regression. Both models were applied with or without polygenic effect. A fifth model included only polygenic effects and no genomic information. The models needed to estimate 366,959 effects for the haplotype/IBD approach, but only 11,850 effects for the single SNP approach. The four genomic models identified 11 to 14 regions that had a posterior QTL probability >0.1. Accuracies of genomic selection breeding values for animals in generations 4¿6 ranged from 0.84 to 0.87 (haplotype/IBD vs. SNP). It can be concluded that including a polygenic effect in the genomic model had no effect on the accuracy of the total EBVs or prediction of the QTL positions. The SNP model yielded slightly higher accuracies for the total EBVs, while both models were able to detect nearly all QTL that explained at least 0.5% of the total phenotypic varianc

    Comparison of analyses of the QTLMAS XIII common dataset. II: QTL analysis

    Get PDF
    Background - Five participants of the QTL-MAS 2009 workshop applied QTL analyses to the workshop common data set which contained a time-related trait: cumulative yield. Underlying the trait were 18 QTLs for three parameters of a logistic growth curve that was used for simulating the trait. Methods - Different statistical models and methods were employed to detect QTLs and estimate position and effect sizes of QTLs. Here we compare the results with respect to the numbers of QTLs detected, estimated positions and percentage explained variance. Furthermore, limiting factors in the QTL detection are evaluated. Results - All QTLs for the asymptote and the scaling factor of the logistic curve were detected by at least one of the participants. Only one out of six of the QTLs for the inflection point was detected. None of the QTLs were detected by all participants. Dominant, epistatic and imprinted QTLs were reported while only additive QTLs were simulated. The power to map QTLs for the inflection point increased when more time points were added. Conclusions - For the detection of QTLs related to the asymptote and the scaling factor, there were no strong differences between the methods used here. Also, it did not matter much whether the time course data were analyzed per single time point or whether parameters of a growth curve were first estimated and then analyzed. In contrast, the power for detection of QTLs for the inflection point was very low and the frequency of time points appeared to be a limiting factor. This can be explained by a low accuracy in estimating the inflection point from a limited time range and a limited number of time points, and by the low correlation between the simulated values for this parameter and the phenotypic data available for the individual time point
    • …
    corecore