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Abstract

Background

Since both the number of SNPs (single nucleotide polymorphisms) useénomi;
prediction and the number of individuals used in training datasets are rapidly iimg,ré&aere
is an increasing need to improve the efficiency of genomic gredi models in terms ¢
computing time and memory (RAM) required.

Methods

In this paper, two alternative algorithms for genomic predictierpaesented that replace
originally suggested residual updating algorithm, without affectivegetstimates. The fir

alternative algorithm continues to use residual updating, but takesitageaof the

characteristic that the predictor variables in the model (i.eStiié genotypes) take or
three different values, and is therefore termed “improved residuatiogti The secon
alternative algorithm, here termed “right-hand-side updatindiSRipdating), extends tf

idea of improved residual updating across multiple SNPs. The aiterrdgorithms can be

implemented for a range of different genomic predictions modelsuding random
regression BLUP (best linear unbiased prediction) and most Baygenomic predictio
models. To test the required computing time and RAM, both alterndfjeeitams were
implemented in a Bayesian stochastic search variable selection model.

Results
Compared to the original algorithm, the improved residual updating thigoreduced CPL
time by 35.3 to 43.3%, without changing memory requirements. The URH&ng

algorithm reduced CPU time by 74.5 to 93.0% and memory requiremei. byo 66.49
compared to the original algorithm.

Conclusions

The presented RHS-updating algorithm provides an interestingatitee to reduce bot
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computing time and memory requirements for a range of genomic prediction models.




Background

Many models have been suggested for genomic prediction (for avres#e [1]). The
computing time required to estimate SNP (single nucleotide pophmeim) effects varies
considerably between models, e.g. [2]. Computing time depends both on therrairBNPs
used and the number of animals in the training dataset. The Rttapidly increasing,
exceeding 15 000 animals in some cases, e.g. [3]. The number of \&&&sis also
increasing rapidly with the availability of high-density SNP psuiire cattle with 648 874 and
777 962 SNPs [4] and recently, investigations on the use of whole-genomacgedat in
genomic prediction have been reported [5,6]. These developments empasizeeasing
need to improve the efficiency of genomic prediction models in tefrmemputing time and
memory requirements. To overcome computing limitations, some fatrmentations have
been reported for genomic prediction models such as BayesA [7],BBE/8% and Bayesian
Lasso [10]. At the same time, it has been suggested that easleiction methods such as
BayesB are required to make optimal use of whole-genome seqdatecen genomic
prediction [6]. The number of reports that compare the fast impletn@amtof such variable
selection methods to the Markov chain Monte Carlo (MCMC) based cparitehas thus far
been limited, and all of the aforementioned studies were based orateichdlata with a
limited number of simulated QTL. To enable the comparison of theseniethods to their
MCMC based counterparts in real datasets with whole-genome seqdate; efficient
implementations of MCMC genomic prediction models are also required.

Genomic prediction models can be classified into those that involvécigstimation of
SNP effects (using genomic relationships), e.g. [11], and those irilialve explicit
estimation of SNP effects [12]. Genomic prediction models thplioitky estimate SNP
effects, commonly perform regression with SNP genotypes dscfmevariables [1], coded
as 0,1,2 or -1,0,1, referring respectively to the homozygous, heterozygouse atigrnative
homozygous genotype. The characteristic that the predictor variaate take only three
possible values provides an interesting opportunity to reduce the compiriagof
algorithms to estimate SNP effects.

The objective of this paper was to describe two efficientralgos to estimate SNP effects
that take advantage of the characteristic that each predictableafSNP genotype) can take
only three different values. The efficiency of the two algonis is compared in terms of
memory and computing time requirements to that of a commonly usedhaigthat is based
on residual updating.

Methods

Updating schemes to estimate SNP effects

In general, the efficiency of algorithms to estimate SNecef can be improved by avoiding
redundant computations. The general conditional genomic prediction modéhtatesSNP
effects for locug, is:

yj =1u +x;a; +e,



wherey; is a vector with conditional phenotypes for SNA is a vector of 1'sy is the
overall meany; is a vector with SNP genotypes at logus; is the allele substitution effect
for locusj, ande is a vector of residuals. Note that elements;afould be simply equal to 0,

1, or 2, or take any other value. l.e., elementg;ofould be scaled and centred, such that
they take the following values——2/— —-2%J 272
Jij(l—Pj) Jij(l_pj) Jij(l_pj)
of the allele at locugfor which the homozygous genotype is coded as 2. Such scaling of the
genotype coding is reported to have some numerical advantages wigM@MC methods

[13]. Conditional phenotypegr]('”l) for SNPj in iterationl+1 are defined as phenotypes
corrected for estimated effects at all other SNP loci, as [14]:

, Wherep; is the frequency

*[+1

y; =y- X1:j—1f’i§J:rj1—1 - Xj+1:n"A‘]l'+1:n - 1)

wheren is the number of SNPs included in the model &ndés a matrix that stores all
genotypes. The conditional mean of the allele substitution eﬁ}a*dtlfor locusj in iteration

| + 1 is obtained as follows:

Al+1 X;‘(Y—X1:j—1al1fj1—1—Xj+1:n5‘5‘+1;n—ﬂ) _ X;'Y;'Hl

a =
J I I i+A;
y ]x1+A]

X Xj+7xj - X (2)

2

where}; = 2¢ o2 is the residual variance, amd. is the variance associated with logus
o5 . J

]
Note thatcéj in equation (2) can be estimated in several ways, as done kknoeth
models such as BayesA and BayesB [12], BayesC [15] or Bay&ahastic Search
Variable Selection [16,17], or can be assumed to be known as in RR-BLUP [12,18]. Note that
equation (2) gives the value required in a Gauss-Seidel algorithm to computeeBtitiBtes
for the allele substitution effects, while it gives the mehthe conditional posterior density
if a Bayesian model is used to estimate the allele substitution effects.

Using residual updating, the conditional phenotypes in equation (Bratianl + 1,y}"l+1,
can be more efficiently computed as [14]:

Kl1+1 _ l+1 al
y," =€ +x;4;, (3)

Wheree]l-+1 contains the current residuals, i.e.:

e}+1 Aal+1 X

— Al
= y_xl:jal:j - ]+1:naj+1:n - U

Using residual updating, the conditional mean of the allele substiteffect (d}“) in
iterationl + 1 can then be obtained per locus as follows [14]:
/%4

Xj+)‘j

x'-el-+1+x
d}+1 — J7J (4)

7

Xj

Considering that, in each iteration, allele substitution effectd briestimated fon loci,
using phenotypes af individuals, computing all conditional phenotypes using equation (1)



requiresmn(n-1) multiplications anann(n-1) subtractions, whereas equation (3) requires only
mn multiplications andnn summations. After calculatlngl+1 the residual updating step is

finalized by updating all residuals such that they can be usedrpute conditional
phenotypes for SNP+ 1 [14]:

e]li;{ _ el+1 X](Al+1 A~ ) (5)

Hereafter, the algorithm that uses equations (3), (4) and (bpeviteferred to as “original
residual updating”. In the original residual updating algorithm, upglatf the residuals and
obtaining the sum of cross-products of the residuals and genotypasloindividual are the

most time-consuming steps [15]. As indicated by Legarra and &lifi4], x]'-xj can be
calculated once and stored in memory. As a result, to corﬁb*dtajsing equation (4 + 1

multiplications are required. The number of multiplications can be eedng first summing
residuals é}“) across animals with the same genotypes, and then multiplyohgoédhose
three sums by the appropriate genotype. Considering this, equation (4) can therrasri

~l+1 Y]fl+1 n;y;a;

9 x]x]+xj (6)

where they; (yf) is a vector that contains the (squared) centred and scaled wélies
three genotypes that are present at I(jqu%“ 1is a 3 x 1 vector that contains the sum of the

residuals for each genotypat locusj, i.e.f{** = ¥, e/**, and vecton; contains the number
of animals for each genotype at logudt should be noted here thn;'yf = x]'-xj, but the
notationn}y? is introduced here to clarify implementation in the newly propokgatithm,
as will be shown later. Equation (6) involves only four multiplicatiard #hus, requirest3
fewer multiplications than equation (4) (noting that all valuesnfo]ﬁ can be computed once

and stored). Thosem3 multiplications are replaced byn3 summations that are
computationally less demanding than multiplications using standarttafrofunctions.

Hereafter, the algorithm that uses equations (5) and (6) wiletegred to as “improved
residual updating”.

Further reduction of the number of required computations is possible updage for locug
+ 1 by using the residual information that was already calculated in theeugddacus:

ficii1 = i — Niwa v, (&7 — @), (7)

Wheref}jji1 =Dk e,lj;il, i.e. a 3 x 1 vector that contains the sums of the residualssbefor
updating locug + 1 for each genotygeat locus + 1 in iterationl + 1, andl\l}HJ isa3x3
matrix that contains the number of animals that have any of te combinations of
genotypes at logiandj + 1. Note thaN]'-H‘jyj can be computed once and stored. The term
hfcff]%rl is a vector that contains the sum of the residuals for each dfirdes genotypek at

locusj + 1. Each of these sums is computed from the sums of residualse (bpdating) for
each of the three genotypeeat locus] that were computed within groups of animals having
genotypek at locusj + 1, i.e. hfjjlﬂ = Zk]+121 Ulkjﬂ Thus, for locug, first 3 x 3 =9

sums of residuals are calculated, one for each unique combinaienatfypes at logiandi



+ 1. These sums include the residuals be&(})’ré is used to update them. The update at locus
j is accounted for by the terN}, , ;¥;(a/*"* — a}).

Implementing equation (7) in (6) yields:

' l+1 ' Sl+1_ Al o2 Al
AL+ Yj+1(hk,j+1_(Nj+1,ij(aj —aj)))+n]-+1yj+1aj+1
i1 = -

(8)

Xjp1Xjr1thjpn

The alternative proposed updating scheme to comiftjﬁeinvolves applying equation (8)
instead of (4) or (6) for locus+ 1. This updating scheme is hereafter referred to abt-rig
hand-side updating” (RHS-updating), since it essentially involves dipetating of the right-

hand-sides of the model to estimate the SNP effects, without hevexplicitly update the

residuals every time a SNP effect is estimated.

Instead of explicitly updating residuals after computing thelealbeibstitution effect, the
change of the residuals is stored for each possible combinationaif/ges at locj andj + 1
as:

l ~1 ~1 "Al ~1
Aeji%,j = Yj+11'(ajii - aj+1) + 1Yj(aj+1 - aj)' 9)

whereAe}i},j is a 3 x 3 matrix that contains updates to the residuals dbraeembination of

genotypes at logiandj + 1 after computing the allele substitution effects for those &

1is a vector of 1's, such that bogh, ;1" and1y; are 3 x 3 matrices. After computiig**

anda}ﬂ, residuals for each combination of genotypes atjlandj + 1 can be updated as:

41,42 _ I+1) A 141
ki1 = €k i1 — Dek i+ (10)

whereAe;t} ., ; is the element ief{] ; that corresponds to genotykeat locusj + 1 and

genotypd at locug. Applying equations (9) and (10) for locuandj + 1, finalizes the RHS-
updating step, just like equation (5) finalizes the residual updating step.

A set of SNPs that is consecutively analysed using RHS-ugd&ihereafter referred to as a
“RHS-block”. It should be noted that for the first locus within an R#t&k, here referred to
as locug, there is no dependency on the previously evaluated locus and themgfaten
(8) reduces to:

1, 21
g+t = Yifij *nvj4;

]-Xj+7xj

(11)

X

This can be interpreted as the initialization step where, thrstsums of residuals for all nine

RHS-group are computed &e}jﬁcﬁl and, second, the sum of residuals for each genotype

at locusj is computed asf{** = ¥; ¥'; e/%, ;+1. Thus, the RHS-updating scheme for “RHS-

blocks” of two loci involves the following steps:

1. apply equation (11) for locys
2. apply equation (8) for locyst+ 1,
3. apply equation (9) for locysandj + 1, and



4. apply equation (10) to update the residuals.

This implies that the number of operations for logisssimilar for the residual updating and
RHS-updating algorithms. However, for logus 1, applying equation (8) requires only 20
summations and subtractions and 11 multiplications, compared¢3csummations and 4
multiplications that are required when applying (6). This indictias the total number of
operations is drastically reduced by the RHS-updating algorithm.

Consider that for each pair of loci, groups of animals can be figehthat have the same
combination of genotypes at those two loci. With regard to the RHSingdatheme, two
important points should be noted. First, the groups within RHS-blocks aadbd such that
each group code always contains the same genotypes on thendirseeond SNP. E.g.,
considering that there aré groups. At locug + 1, groups 1-3 contain genotype 0, groups 4-6
contain genotype 1, and groups 7-9 contain genotype 2. At jpogusups 1, 4 and 7 contain
genotype 0, groups 2, 5 and 8 contain genotype 1, and groups 3, 6 and 9 contain @enotype
A schematic representation of this group coding within RHS-blocks Kgure 1. Using
such unique coding for the groups within RHS-blocks implies that genatlgpest need to
be stored explicitly in memory, since they are stored impfitmtough the group numbers. In
the RHS-updating algorithm, the array that stores the group codestavad as integer(2). In
the residual updating algorithms, similarly, per locus and individbal, “todes” of the
genotypes were stored in an integer(1) array while for eadls ltthe actual values of the
three genotypes were stored separately. In fact, the arraggstbe genotypes for the
residual updating algorithm or the group codes for the RHS-updatirgithig are the
largest arrays used in those algorithms, and therefore ladgtdymine the total amount of
RAM used. For residual updating, this array is of sizen and was stored as integer(1) and
the amount of RAM used is therefore expected to be proportiomaht&or RHS-updating,
this array is of sizen x n /s, wheres is the number of SNPs per RHS-block and was stored
as integer(2). The amount of RAM used with RHS-updating is theredgpected to be
proportional to2mrs. These simple formulas, adjusted to predict RAM use in Gb (Tigble
will be compared to empirically measured RAM use.

Figure 1 Schematic overview of the groups defined within an RHS-block that inatles
two SNPs, in the RHS-updating schemé&roups are coded 1 to 9; RHK) represents the
group within an RHS-block that combines individuals with genosyaelocug and
genotypeb at locug + 1.

Table 1Formulas to predict RAM requirement for original and improved residual
updating, and for RHS-updating

Algorithm Predicted RAM requirements (Gb)*
Original residual updating nmx 10°

Improved residual updating nmx 10°

RHS-updating amx 10°/s

' n = number of locim = number of animals = number of loci included per RHS-block.

The second point that should be noted, is that within the RHS-updating eschigen
initialization step described in equation (10) is the most timetroimg and is recurrent
every two loci. By applying the same principles, the RHS-updatihgmse can be also
applied to more than two loci consecutively. Increasing the numblecioper RHS-block
may decrease the relative cost of the initialization step (L@)this will be eventually off-set



by the exponential increase in the number of groups that is dgfereéldHS-block, which is
equal to 3 wheres is the number of SNPs per RHS-block. When the number of loci per
RHS-block increases, then at some stage the equivalent empresgquation (7) becomes
computationally more demanding. The optimal value to be usesllilkely depends on the
number of individuals in the training data)(and will be empirically derived in this study.

The three algorithms described above, are mathematically egptival the sense that they
estimate SNP effects using the same information. Thus, a# @igorithms are expected to
give the same results.

Implementation of RHS-updating in Bayesian stochast search variable
selection

M odel

The above updating schemes to estimate SNP effects weremetied for a model that is
commonly referred to as Bayes SSVS (Stochastic Searchbaibelection) [16,17] that is
solved using Gibbs sampling and implemented in a computer prograi@nwn Fortran 95.
The genomic model is generally described as:

y=1u + Xa + e,
wherey contains phenotypic recordsjs the overall meari, is a vector of 1’'sX is anm x n
matrix that contains the scaled and centered genotypes of alldunalsja contains the
(random) allele substitution effects for all loci, aedontains the random residuals. The

specific parameterization of the genomic model that resulthenBayes SSVS model is
described below.

Prior densities

The likelihood of the Bayes SSVS model conditional on all unknowns is adstombe
normal:

pilp, &, 02) = N(y; — u — x,0,02)

wherex; denotes the SNP genotypes of anim@efinitions of the unknowns and their prior
distributions are described hereafter.

The prior foru was a constant. The residual variange has a prior distribution gf(6?2) =
x"%(—2,0), which yields a flat prior.

The prior foreg; depends on the varianeg and the QTL indicatol; = 1:

2
Oy
~N <0,m> when I] = 0

~N(0,0F) when I; = 1

2
aj|m, 05 =

The prior distribution for the indicator varialdlgs:



p(Ij) = Bernoulli(1 — m)
wherer was assigned a value of 0.999, afdhas the following prior distribution:

p(03) = 5 "*(Va, SE),

wherev, is the degrees of freedom, set to 4.2 according to [12,15], and the scale pa&Sameter

~2 _
is calculated aS2 = 8a(Ve~2) wheres? is computed as [1]:

Va

2

2 ( 100 )aa
Ggq = —
100 + (1 —100)/ n

wheren is the number of loci.

Conditional posterior densities

The conditional posterior density gfis:

where @; is the conditional mean of the allele substitution effect atislgc whose

w

. . . 62
computation was explained previously,= 6{26, and
o

o =1 if =1

o =100 if [ =0.

The conditional posterior density 6f is an inverse distribution:
o2la~y 2(vy +1n,S% + w'@?)

where@? is a vector with squares of the current estimates oditele substitution effects of
all loci, weighted by vecto®, which contains values of 1 or 100 for each locus.

Finally, the conditional posterior distribution of the QTL-indicatpwas (following the
notation in [19]):

f(r|l; = 1)(1 —m)
f(r;|; = 0)m + f(ry|; = (1 — m)

Pr(l; =1) =

where 1 —z (z) is the prior probability thal; = 1 (I; = 0), r; = x;y" + X;X;@; , Wherey”
contains the conditional phenotypes as defined previouslyf @nd; = ), wheres is either



rZ 2
J ’ Ouq; '
0 or 1, and is proportional E\%e‘z_v, wherev = (x]-xj)zm—_’ + xjx]-cg. It should be noted that
]

v depends ot through its dependence o, i.e. if; = 0 (/; = 1) thenw; = 100 (w; = 1).
Finally, the conditional posterior densityef is an inverse? distribution:

oile ~y?(m—2,e'e)

wherem is the number of animals with records @nid a vector with the current residuals.
Derivation of the optimal number of SNPs included pr RHS-block

Simulated data - CPU time

To investigate to what extent the CPU time of the newly develaforithms depended on
the number of individuals included in the analysis, a dataset of 420&MPsmulated. The
number of SNPs was limited to 420, to reduce total computation tineethas limited
number of SNPs was sufficient to compare the relative computatien df the different
algorithms because total CPU time scales linearly witmthmber of SNPs. Further details
of the simulation are not included here because the aim of the subsanakysts was only
to compare CPU time. The size of the dataset was increatedteps of 500 individuals
from 500 to 100 000 individuals and each dataset was analysed 11 timesewvhe
developed RHS-updating algorithm was used in nine of those analyses,onsirig nine
SNPs per RHS-block. The tenth analysis was an implementation osgigal residual
updating. The eleventh analysis implemented improved residual updadicig.aBalysis was
run for 900 iterations, and the CPU time for these 900 iterations was recorded.

Simulated data - RAM use

To investigate to what extent the required amount of RAM of the ndexgloped algorithm
depended on the number of individuals in the analysis, a dataset of 50 0G0OwalNP
simulated. The number of individuals was increased in steps of 500@urals from 500 to
95 500 individuals. This number of SNPs and animals yielded a range aset$atvith
dimensions that corresponded to the size of currently used praleiasets and each dataset
was analysed 11 times. These analyses involved the same randetettings as used to
evaluate CPU time. Each analysis was run until the iterasitamed, i.e. when the maximum
RAM requirement was reached, at which point the used RAM wasd&t and the process
was aborted. The maximum RAM requirement was measured lgviedr the process ID
and then storing the RAM use for that process. Details of this quoe@re provided in the
Appendix 1.

All comparisons were run on a Windows XP-64 desktop pc with an IntxéBh(R) 64-bit

CPU E5420 with a clock speed of 2.50 GHz. Comparisons on CPU tineealg® run on a
Linux platform with an AMD Opteron 8431 64-bit CPU with a clock spee@.89 GHz

running Ubuntu 12.04.3. The programs were compiled with the Intel® Fortoampi@r

11.0.075 for Windows and the Intel® Fortran Compiler 13.0.079 for Linux.



Results

CPU time

The required CPU time on the Windows workstation for the RHS-updatiggrithm
depended strongly on the number of SNPs included per RHS-block (Figureal) cases,
including more than six SNPs per RHS-block resulted in a longer @@R&) Conversely,
including less than four or five SNPs per RHS-block also resuttesd longer CPU time,
especially when the number of individuals was large. The solid lifkégure 2 shows that
the optimal number of SNPs included per RHS-block that results itowest CPU time,
changed with the number of individuals in the analysis. This is fuittbstrated in Figure 3,
where the actual number of SNPs that gave the minimum CPUidipletted against the
number of individuals in the analysis. Although there was a clead tlacross the number of
individuals, especially with a larger number of individuals, thers wa exact threshold
when either five or six SNPs were included per RHS-block, whicltates that there was
very little difference in CPU time when five or six SNPs evesed. Similar trends in CPU
time were observed when running the analysis on the Linux sesvevhich slightly longer
CPU times were generally observed (Figure 4). Neverthelads,onr implementation of
RHS-updating, it appears to be appropriate to include two SNPs \keemumber of
individuals is less than 1000, three SNPs when it is between1000 and 250Nfainwvhen
it is between 2500 and 11 000, five SNPs when it is between 11 000 and 50dGx a
SNPs when it is between 50 000 and 100 000.

Figure 2 CPU time on a Windows workstation for RHS-updating using different

numbers of SNPs per RHS-blockThe reported time is for Gibbs chains of 900 iterations;

the algorithm used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an
increasing number of individuals (500 to 100 000); the black line is the fitted curve through

the number of SNPs that gave the minimum CPU time.

Figure 3 The number of SNPs included per RHS-block in RHS-updating, that yieled
the minimum computing time. Minimum computing time was evaluated for an increasing
number of individuals (500 to 100 000).

Figure 4 CPU time on a Linux server for RHS-updating using different numbersof

SNPs per RHS-block.The reported time is for Gibbs chains of 900 iterations; the algorithm
used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an increasing
number of individuals (500 to 100 000); the black line is the fitted curve through the number
of SNP that gave the minimum CPU time.

The CPU time for the Gibbs chain using the optimal number of SEPRIHS-block was
compared to the CPU time of the original and improved residual updatiegnes across the
different numbers of animals included in the analysis (FigureCBmpared to original
residual updating, improved residual updating reduced CPU time on tmeloWs
workstation by 35.3 to 43.3%, and RHS-updating reduced CPU time by 74.5 to 93.0%.
Improvements in terms of CPU time were similar for thieuki server (results not shown).
The required CPU time for pre-processing the data was $ligiger for the RHS-updating
versus the residual updating algorithm. On the Windows workstation, folatheet with 95

500 animals and 50 000 SNPs, the time to transform the SNP dathar(iateger) coding,
required 954 s and 1217 s, respectively, for the residual updatintherdHS-updating



algorithm. These results show that, although most of the reductionUrti@®e achieved by
RHS-updating originated from evaluating SNPs within RHS-blockeerahan individually,
at the same time, the first step to implement improved resihddting already makes an
important contribution to the reduction in CPU time.

Figure 5 CPU time on a Windows workstation using two residual updating schemesd
RHS-updating. CPU time for a Gibbs chain of 900 iterations was evaluated for 420 SNPs
and an increasing number of individuals (500 to 100 000); the reported CPU time for the
RHS-updating scheme is the minimum computing time of nine analyses that include one t
nine SNPs per RHS-block, for each number of individuals.

RAM use

The required amount of RAM for the RHS-updating algorithm also dependie erumber

of SNPs included per RHS-block (Figure 6). In nearly all casetuding more than six
SNPs per RHS-block resulted in more RAM used. Conversely, including less than tlixee to s
SNPs per RHS-block also resulted in more RAM used, especially wiee number of
individuals was large. The pattern in RAM use (Figure 6), cltanvgéh the number of
individuals in the dataset, in a pattern that was quite simil#naibof the CPU time. This
implies that choosing an optimal number of SNPs per RHS-block lmasedquired CPU
time, yields an algorithm that is also close to optimal in terms of RAM use.

Figure 6 RAM use (Gb) for RHS-updating with one to nine SNPs per RHS-blockRAM
use was evaluated for 50 000 SNPs and an increasing number of individuals (500 to 95 500).

In Figure 7, the amount of RAM used is plotted for all three dlguos, for datasets with 50
000 SNPs and 500 to 95 500 individuals. Note that both residual updating hahgorit
required about the same amount of RAM, therefore only one curve watssdplor residual
updating. In the case of RHS-updating, for each number of individuals, githaumber of
SNPs per RHS-block that gave the minimum CPU time or the number that gaviaeitheamm
amount of required RAM was used. Both sets of numbers of SNPs pebla¢kSgave very
similar answers. Compared to the residual updating schemesggdilnion in required RAM
for RHS-updating ranged from 13.1 to 66.4%.

Figure 7 RAM use (Gb) for residual updating versus RHS-updatingFor RHS-updating,

the number of SNPs per RHS-block was set to the number that gave either the minimum
computing time (min. time) or the minimum RAM requirement (min. RAM); RAM usg wa
evaluated on a Windows workstation for a dataset with 50 000 SNPs and for an increasing
number of individuals (500 to 95 500); note that only one curve is plotted for residual
updating, because both residual updating algorithms require practically tharsaonet of

RAM.

As shown in Figure 7, for a fixed number of SNPs, the RAM uskeeofesidual updating and
the RHS-updating algorithms were linearly related to the numbanimals included. This
agrees with the derived formulas for expected RAM use in Tablkhd.ability of those
equations to predict measured RAM use, was investigated bysagyeneasured RAM use
on predicted RAM use for each method, based on datasets con&nd@ SNPs and 500
to 95 500 animals. The results of those regressions are presemtddar? and show that the
equations predicted RAM use with arf Ralue of 1.0 in all cases. The intercepts of the
regression generally had a positive value, indicating that thechoedequation missed only



a small proportion of the used RAM. This value became substantifiddRHS-updating
algorithm when the number of SNPs per RHS-block was equal to 7 erbaocause, e.g., the
relative size of the array that stores the number of individoaledch RHS-group increases
considerably when the number of RHS-blocks increases.

Table 2 Coefficients of the regression of measured on predicted RAM requements for
original and improved residual updating, and for RHS-updating

Algorithm Intercept Slope R?
Original residual updating 0.014 0.983 1.000
Improved residual updating 0.014 0.983 1.000
RHS-updating (1) 0.015 0.981 1.000
RHS-updating (2) 0.015 0.983 1.000
RHS-updating (3) 0.016 0.985 1.000
RHS-updating (4) 0.024 0.981 1.000
RHS-updating (5) 0.035 0.983 0.999
RHS-updating (6) 0.065 0.977 0.996
RHS-updating (7) 0.229 0.989 1.000
RHS-updating (8) 0.659 0.990 1.000
RHS-updating (9) 1.948 0.992 1.000

' The number between brackets indicates the number of SNPs per RHS-block.

Discussion

Two alternative algorithms were presented that can be imgpied in various genomic
prediction models for fast computing of SNP effects. The algorittepkace the originally
suggested residual updating algorithm [14], without affecting thsultee obtained.
Differences in results between algorithms were similahdgé within algorithms when using
different random seeds and correlations between different se¢sudtsr were greater than
0.99 (results not shown). Both algorithms use the characteristicotiyatthree different
genotypes are observed for each SNP. Both algorithms can accotranoodsvith more than
three genotypes, but this may reduce or eliminate their benef#rms of computing time
over original residual updating schemes. The limitation on the nuohlgenotypes per locus
implies that imputed genotypes defined as gene contents cannot beruséed/iduals in the
training data in the algorithm. Nevertheless, a simple transtavmof gene contents to the
most likely genotype overcomes this problem. This transformation couikstance be (on a
0-2 scale): genotypes 0.5 are set to 0, genotypesdl.5 are set to 2, and all other genotypes
are set to 1. Such transformations for imputed genotypes in thingyaiata are expected to
have a minor impact on the estimated SNP effects, providedhthagehotypes are imputed
with reasonable accuracy. Using gene contents for selectimdideses, i.e. individuals
whose genetic merit is predicted using SNP effects esithfabm the training data, is not
inhibited by the proposed algorithms, because their predicted gemetic can simply be
obtained outside the algorithm by multiplying their gene contents allele substitution
effects that are estimated in the algorithm. The liteeastnows that for selection candidates,
predictions differ when gene contents or the most likely genotypes are used [20]

The residual updating algorithms were implemented using standard (e.g. dot_produat) F
functions. Computer-specific optimized libraries are available [21}2#]can considerably
reduce the CPU time required for, e.g., vector and matrix multijpiicsa[23]. Using such

libraries may have a larger impact on CPU time for theluasiupdating algorithms than for



the RHS-updating algorithm, since the former involves many maigptications. However,
even when using such optimized libraries, the RHS-updating algostbktil expected to be
considerably more efficient, because it drastically reducestdata¢ number of required
operations.

It should be noted that the RHS-updating scheme requires slighttyowerhead in terms of
computing time than the residual updating scheme, for instancére ttee RHS-blocks and
the group coding within those blocks. Once RHS-blocks and group coding ereddéfiey
can be used in each iteration of the Gibbs chain. This matyflewibility in the algorithm.
For instance, one way to improve mixing of the Gibbs chains, may jrermute the order of
evaluation of SNP effects between iterations. With the RHS-updstingme, the order of
evaluation of SNP effects within RHS-blocks must be the sameaghout the Gibbs chain,
such that group coding within RHS-blocks needs to be defined only oncetliddess, the
order of evaluation of the RHS-blocks can still be permuted. Furdrermto avoid that
neighbouring SNPs are always evaluated in the same order, 8NP& @llocated to RHS-
blocks at random.

The RHS-updating scheme not only considerably reduced computing timp,t6y¥3%, but
also resulted in a reduction of the amount of RAM used of up to 66%tdie nature of
the RHS-updating algorithm, computing time and RAM use are lingalited with the
number of SNPs considered, similar to the residual updating algorithis implies that the
relative benefit of using the RHS-updating algorithm compared tordbielual updating
algorithm is not affected by the number of SNPs included. In oplementation, which is
written in Fortran 95, group codes within RHS-blocks were stored agseger(2) variable,
while the genotypes in the original implementation with residual upgatere stored as an
integer(1) variable. It should be noted that storing group codesegeii(it) would lead to a
further reduction in RAM requirements of almost 50%, because thy #rat stores the
group codes uses close to 100% of the RAM used by the algorithmdSgpaup codes as
integer(1), implies that the number of SNPs included per RHS-bloeckdshe equal to four
or less, i.e. the maximum value an integer(1) variable can satguial to 127, and including
4 (5) SNPs per RHS-block yield§ 3 81 (3 = 243) groups; the maximum value an integer(2)
variable can take, is equal to 32 767. This means that a maximumeofShPs can be
included per RHS-block, otherwise the group code must be stored as}ege. including
9 (10) SNPs per RHS-block yields 3 19 683 (3° = 59 049) groups. Our results show that
with the largest number of individuals considered (100 000), the optimal nwhisMPs
included per RHS-block was equal to six. This suggests thauitlilsely that a number of
individuals in the data that justifies including more than nine SN#sRpS-block, and
therefore requires storing group codes as integer(4), is reached in the near futur

In our implementation of RHS-updating, each RHS-block contaigi8§lPs is assumed to
contain all 3 possible groups, which is most likely not always the case. Moreoleafer
grouping of SNPs within RHS-block can reduce the observed number of gvdbpseach
RHS-block. Such redundancy could be used to further reduce computing timeutdiaigo
likely result in a more complicated algorithm.

Conclusions

Two algorithms are presented to estimate SNP effects dnabve implemented in a range of
different genomic prediction models, as an alternative to thenafigesidual updating



scheme. The first alternative algorithm uses residual updaiemg,termed improved residual
updating, and takes advantage of the characteristic that the predidadsles in the model

(i.e. SNP genotypes) have only three possible values. The secondtaleerlgorithm, here
termed “RHS-updating”, extends the idea of improved residual updatngss multiple
SNPs. The improved residual updating algorithm achieved a reductiomputag time of

35.3 to 43.3%, but did not change the amount of RAM used, compared to the original
residual updating scheme. The RHS-updating algorithm achieved dioedmccomputing

time of 74.5 to 93.0% and a reduction in RAM use of 13.1 to 66.4%, comparedotagihal
residual updating scheme. Thus, the RHS-updating algorithm providesteresting
alternative to reduce both computing time and memory requirements.
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Appendix 1. Pseudo-code to measure maximum RAM
requirement

The maximum RAM requirement was measured by retrieving theeps 1D and then storing
the RAM use for this particular process. On the Windows OS, thss deae using the
following Fortran code:

PROGRAM GIBBS

USE DFPORT !Module that contains function “GETPID”

IMPLICIT NONE

INTEGER :: PROC_ID

CHARACTER(LEN =47) :: SYS_CALL

PROC_ID = GET_PID() 'Retrieve process ID of the current process



IUse DOS command “tasklist” to write RAM use to file “tasklist.txt”
SYS_CALL = "tasklist /fi ""PID eq " > tasklist.txt"
WRITE(SYS_CALL(23:29),(i7))PROC_ID

CALL SYSTEM(SYS_CALL)

END PROGRAM GIBBS
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