
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Right-hand-side updating for fast computing of genomic breeding values

Genetics Selection Evolution 2014, 46:24 doi:10.1186/1297-9686-46-24

Mario PL Calus (mario.calus@wur.nl)

ISSN 1297-9686

Article type Research

Submission date 6 July 2013

Acceptance date 26 February 2014

Publication date 3 April 2014

Article URL http://www.gsejournal.org/content/46/1/24

This peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see
copyright notice below).

Articles in Genetics Selection Evolution are listed in PubMed and archived at PubMed Central.

For information about publishing your research in Genetics Selection Evolution or any BioMed
Central journal, go to

http://www.gsejournal.org/authors/instructions/

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

Genetics Selection Evolution

© 2014 Calus
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wageningen University & Research Publications

https://core.ac.uk/display/29212892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mario.calus@wur.nl
http://www.gsejournal.org/content/46/1/24
http://www.gsejournal.org/authors/instructions/
http://www.biomedcentral.com/

Right-hand-side updating for fast computing of
genomic breeding values

Mario PL Calus1*
* Corresponding author
Email: mario.calus@wur.nl

1 Animal Breeding and Genomics Centre, Wageningen UR Livestock Research,
6700 AC Wageningen, The Netherlands

Abstract

Background

Since both the number of SNPs (single nucleotide polymorphisms) used in genomic
prediction and the number of individuals used in training datasets are rapidly increasing, there
is an increasing need to improve the efficiency of genomic prediction models in terms of
computing time and memory (RAM) required.

Methods

In this paper, two alternative algorithms for genomic prediction are presented that replace the
originally suggested residual updating algorithm, without affecting the estimates. The first
alternative algorithm continues to use residual updating, but takes advantage of the
characteristic that the predictor variables in the model (i.e. the SNP genotypes) take only
three different values, and is therefore termed “improved residual updating”. The second
alternative algorithm, here termed “right-hand-side updating” (RHS-updating), extends the
idea of improved residual updating across multiple SNPs. The alternative algorithms can be
implemented for a range of different genomic predictions models, including random
regression BLUP (best linear unbiased prediction) and most Bayesian genomic prediction
models. To test the required computing time and RAM, both alternative algorithms were
implemented in a Bayesian stochastic search variable selection model.

Results

Compared to the original algorithm, the improved residual updating algorithm reduced CPU
time by 35.3 to 43.3%, without changing memory requirements. The RHS-updating
algorithm reduced CPU time by 74.5 to 93.0% and memory requirements by 13.1 to 66.4%
compared to the original algorithm.

Conclusions

The presented RHS-updating algorithm provides an interesting alternative to reduce both
computing time and memory requirements for a range of genomic prediction models.

Background

Many models have been suggested for genomic prediction (for a review: see [1]). The
computing time required to estimate SNP (single nucleotide polymorphism) effects varies
considerably between models, e.g. [2]. Computing time depends both on the number of SNPs
used and the number of animals in the training dataset. The latter is rapidly increasing,
exceeding 15 000 animals in some cases, e.g. [3]. The number of SNPs used is also
increasing rapidly with the availability of high-density SNP panels in cattle with 648 874 and
777 962 SNPs [4] and recently, investigations on the use of whole-genome sequence data in
genomic prediction have been reported [5,6]. These developments emphasize an increasing
need to improve the efficiency of genomic prediction models in terms of computing time and
memory requirements. To overcome computing limitations, some fast implementations have
been reported for genomic prediction models such as BayesA [7], BayesB [8,9] and Bayesian
Lasso [10]. At the same time, it has been suggested that variable selection methods such as
BayesB are required to make optimal use of whole-genome sequence data in genomic
prediction [6]. The number of reports that compare the fast implementation of such variable
selection methods to the Markov chain Monte Carlo (MCMC) based counterparts has thus far
been limited, and all of the aforementioned studies were based on simulated data with a
limited number of simulated QTL. To enable the comparison of these fast methods to their
MCMC based counterparts in real datasets with whole-genome sequence data, efficient
implementations of MCMC genomic prediction models are also required.

Genomic prediction models can be classified into those that involve implicit estimation of
SNP effects (using genomic relationships), e.g. [11], and those that involve explicit
estimation of SNP effects [12]. Genomic prediction models that explicitly estimate SNP
effects, commonly perform regression with SNP genotypes as predictor variables [1], coded
as 0,1,2 or -1,0,1, referring respectively to the homozygous, heterozygous, and the alternative
homozygous genotype. The characteristic that the predictor variables can take only three
possible values provides an interesting opportunity to reduce the computing time of
algorithms to estimate SNP effects.

The objective of this paper was to describe two efficient algorithms to estimate SNP effects
that take advantage of the characteristic that each predictor variable (SNP genotype) can take
only three different values. The efficiency of the two algorithms is compared in terms of
memory and computing time requirements to that of a commonly used algorithm that is based
on residual updating.

Methods

Updating schemes to estimate SNP effects

In general, the efficiency of algorithms to estimate SNP effects can be improved by avoiding
redundant computations. The general conditional genomic prediction model to estimate SNP
effects for locus j, is:

��∗ � ��	 � 	�
� � �,

where ��∗ is a vector with conditional phenotypes for SNP j, � is a vector of 1’s, µ is the
overall mean, 	� is a vector with SNP genotypes at locus j,
� is the allele substitution effect
for locus j, and � is a vector of residuals. Note that elements of 	� could be simply equal to 0,
1, or 2, or take any other value. I.e., elements of 	� could be scaled and centred, such that

they take the following values:
����

����������,
�����

���������� or
�����

����������, where �� is the frequency

of the allele at locus j for which the homozygous genotype is coded as 2. Such scaling of the
genotype coding is reported to have some numerical advantages when using MCMC methods
[13]. Conditional phenotypes (��∗,���) for SNP j in iteration l+1 are defined as phenotypes
corrected for estimated effects at all other SNP loci, as [14]:

��∗,��� � � � ��:������:������ � ����:������:�� � �, (1)

where n is the number of SNPs included in the model and X is a matrix that stores all
genotypes. The conditional mean of the allele substitution effect (
�����) for locus j in iteration
l + 1 is obtained as follows:

����� � 	�� ���!:�"!��!:�"!#$! ���$!:%���$!:%# �&'	��	��(� � 	����∗,#$!
	��	��(�, (2)

where λ� � *+,*-�, , σ/� is the residual variance, and σ0�� is the variance associated with locus j.

Note that σ0�� in equation (2) can be estimated in several ways, as done in well-known
models such as BayesA and BayesB [12], BayesC [15] or Bayesian Stochastic Search
Variable Selection [16,17], or can be assumed to be known as in RR-BLUP [12,18]. Note that
equation (2) gives the value required in a Gauss-Seidel algorithm to compute BLUP estimates
for the allele substitution effects, while it gives the mean of the conditional posterior density
if a Bayesian model is used to estimate the allele substitution effects.

Using residual updating, the conditional phenotypes in equation (1) in iteration l + 1, ��∗,���,
can be more efficiently computed as [14]:

��∗,��� � ����� � 	�a��� , (3)

where �����  contains the current residuals, i.e.:

����� � � � ��:����:���� � ����:������:�� � �.

Using residual updating, the conditional mean of the allele substitution effect (
�����) in
iteration l + 1 can then be obtained per locus as follows [14]:

����� � 	4′��#$!�	�′ 	�0��#	�′ 	��λ� (4)

Considering that, in each iteration, allele substitution effects must be estimated for n loci,
using phenotypes of m individuals, computing all conditional phenotypes using equation (1)

requires mn(n-1) multiplications and mn(n-1) subtractions, whereas equation (3) requires only
mn multiplications and mn summations. After calculating
�����, the residual updating step is
finalized by updating all residuals such that they can be used to compute conditional
phenotypes for SNP j + 1 [14]:

������� � ����� � 	��
����� �
����. (5)

Hereafter, the algorithm that uses equations (3), (4) and (5) will be referred to as “original
residual updating”. In the original residual updating algorithm, updating of the residuals and
obtaining the sum of cross-products of the residuals and genotypes of each individual are the
most time-consuming steps [15]. As indicated by Legarra and Misztal [14], 	�′	� can be
calculated once and stored in memory. As a result, to compute
�����  using equation (4), m + 1
multiplications are required. The number of multiplications can be reduced by first summing
residuals (�����) across animals with the same genotypes, and then multiplying each of those
three sums by the appropriate genotype. Considering this, equation (4) can be rewritten as:

����� � 5�′ 6�#$!�7�′ 5�,0��#	�′ 	��λ� (6)

where the 5� �5���  is a vector that contains the (squared) centred and scaled values of the
three genotypes that are present at locus j, 6���� is a 3 × 1 vector that contains the sum of the

residuals for each genotype i at locus j, i.e. 6���� � ∑ 9:,����: , and vector nj contains the number

of animals for each genotype at locus j. It should be noted here that 7�′5�� � 	�′	�, but the

notation 7�′5�� is introduced here to clarify implementation in the newly proposed algorithm,
as will be shown later. Equation (6) involves only four multiplications and, thus, requires m-3
fewer multiplications than equation (4) (noting that all values for 7�′5�� can be computed once
and stored). Those m-3 multiplications are replaced by m-3 summations that are
computationally less demanding than multiplications using standard Fortran functions.
Hereafter, the algorithm that uses equations (5) and (6) will be referred to as “improved
residual updating”.

Further reduction of the number of required computations is possible in the update for locus j
+ 1 by using the residual information that was already calculated in the update of locus j:

6;,������ � <;,������ � =���,�′ 5��
����� �
����, (7)

where 6;,������ � ∑ 9;,������; , i.e. a 3 × 1 vector that contains the sums of the residuals before
updating locus j + 1 for each genotype k at locus j + 1 in iteration l + 1, and =���,�′ is a 3 × 3
matrix that contains the number of animals that have any of the nine combinations of
genotypes at loci j and j + 1. Note that =���,�′ 5� can be computed once and stored. The term <;,������ is a vector that contains the sum of the residuals for each of the three genotypes k at
locus j + 1. Each of these sums is computed from the sums of residuals (before updating) for
each of the three genotypes i at locus j that were computed within groups of animals having
genotype k at locus j + 1, i.e. <;,������ � ∑ ∑ 9:,�|;,������:;,��� . Thus, for locus j, first 3 × 3 = 9
sums of residuals are calculated, one for each unique combination of genotypes at loci j and j

+ 1. These sums include the residuals before
����� is used to update them. The update at locus

j is accounted for by the term =���,�′ 5��
����� �
����.
Implementing equation (7) in (6) yields:

������� � 5�$!′ ?<@,�$!#$! �A=�$!,�′ 5� 0��#$!�0��#'BC�7�$!′ 5�$!, 0��$!#
	�$!′ 	�$!�λ�$! . (8)

The alternative proposed updating scheme to compute
������� involves applying equation (8)
instead of (4) or (6) for locus j + 1. This updating scheme is hereafter referred to as “right-
hand-side updating” (RHS-updating), since it essentially involves direct updating of the right-
hand-sides of the model to estimate the SNP effects, without having to explicitly update the
residuals every time a SNP effect is estimated.

Instead of explicitly updating residuals after computing the allele substitution effect, the
change of the residuals is stored for each possible combination of genotypes at loci j and j + 1
as:

D����,���� � 5����′�
������� �
����� � � �5�′ �
����� �
����, (9)

where D����,���� is a 3 × 3 matrix that contains updates to the residuals for each combination of
genotypes at loci j and j + 1 after computing the allele substitution effects for those loci, and
1 is a vector of 1’s, such that both 5����′ and �5�′ are 3 × 3 matrices. After computing
�����
and
�������, residuals for each combination of genotypes at loci j and j + 1 can be updated as:

�;,���;:,����,��� � �;,���;:,����,� � ∆9;,���;:,���� , (10)

where Δ9;,���;:,���� is the element in D����,���� that corresponds to genotype k at locus j + 1 and
genotype i at locus j. Applying equations (9) and (10) for locus j and j + 1, finalizes the RHS-
updating step, just like equation (5) finalizes the residual updating step.

A set of SNPs that is consecutively analysed using RHS-updating, is hereafter referred to as a
“RHS-block”. It should be noted that for the first locus within an RHS-block, here referred to
as locus j, there is no dependency on the previously evaluated locus and therefore equation
(8) reduces to:

����� � 5�6G,�#$!�7�′ 5�,0��#	�′ 	��λ� . (11)

This can be interpreted as the initialization step where, first, the sums of residuals for all nine
RHS-group are computed as ∑ 9:,�|;,������: and, second, the sum of residuals for each genotype

at locus j is computed as: 6:,���� � ∑ ∑ 9:,�|;,������:: . Thus, the RHS-updating scheme for “RHS-
blocks” of two loci involves the following steps:

1. apply equation (11) for locus j,
2. apply equation (8) for locus j + 1,
3. apply equation (9) for locus j and j + 1, and

4. apply equation (10) to update the residuals.

This implies that the number of operations for locus j is similar for the residual updating and
RHS-updating algorithms. However, for locus j + 1, applying equation (8) requires only 20
summations and subtractions and 11 multiplications, compared to m-3 summations and 4
multiplications that are required when applying (6). This indicates that the total number of
operations is drastically reduced by the RHS-updating algorithm.

Consider that for each pair of loci, groups of animals can be identified that have the same
combination of genotypes at those two loci. With regard to the RHS-updating scheme, two
important points should be noted. First, the groups within RHS-blocks can be coded such that
each group code always contains the same genotypes on the first and second SNP. E.g.,
considering that there are 32 groups. At locus j + 1, groups 1-3 contain genotype 0, groups 4-6
contain genotype 1, and groups 7-9 contain genotype 2. At locus j, groups 1, 4 and 7 contain
genotype 0, groups 2, 5 and 8 contain genotype 1, and groups 3, 6 and 9 contain genotype 2.
A schematic representation of this group coding within RHS-blocks is in Figure 1. Using
such unique coding for the groups within RHS-blocks implies that genotypes do not need to
be stored explicitly in memory, since they are stored implicitly through the group numbers. In
the RHS-updating algorithm, the array that stores the group codes was stored as integer(2). In
the residual updating algorithms, similarly, per locus and individual, the “codes” of the
genotypes were stored in an integer(1) array while for each locus the actual values of the
three genotypes were stored separately. In fact, the array storing the genotypes for the
residual updating algorithm or the group codes for the RHS-updating algorithm are the
largest arrays used in those algorithms, and therefore largely determine the total amount of
RAM used. For residual updating, this array is of size m × n and was stored as integer(1) and
the amount of RAM used is therefore expected to be proportional to mn. For RHS-updating,
this array is of size m × n / s, where s is the number of SNPs per RHS-block and was stored
as integer(2). The amount of RAM used with RHS-updating is therefore expected to be
proportional to 2mn/s. These simple formulas, adjusted to predict RAM use in Gb (Table 1),
will be compared to empirically measured RAM use.

Figure 1 Schematic overview of the groups defined within an RHS-block that includes
two SNPs, in the RHS-updating scheme. Groups are coded 1 to 9; RHS(a,b) represents the
group within an RHS-block that combines individuals with genotype a at locus j and
genotype b at locus j + 1.

Table 1 Formulas to predict RAM requirement for original and improved residual
updating, and for RHS-updating
Algorithm Predicted RAM requirements (Gb)1
Original residual updating nm × 10−9
Improved residual updating nm × 10−9
RHS-updating 2 nm × 10−9 / s
1 n = number of loci; m = number of animals; s = number of loci included per RHS-block.

The second point that should be noted, is that within the RHS-updating scheme, the
initialization step described in equation (10) is the most time-consuming and is recurrent
every two loci. By applying the same principles, the RHS-updating scheme can be also
applied to more than two loci consecutively. Increasing the number of loci per RHS-block
may decrease the relative cost of the initialization step (10), but this will be eventually off-set

by the exponential increase in the number of groups that is defined per RHS-block, which is
equal to 3s, where s is the number of SNPs per RHS-block. When the number of loci per
RHS-block increases, then at some stage the equivalent expression of equation (7) becomes
computationally more demanding. The optimal value to be used for s likely depends on the
number of individuals in the training data (m) and will be empirically derived in this study.

The three algorithms described above, are mathematically equivalent, in the sense that they
estimate SNP effects using the same information. Thus, all three algorithms are expected to
give the same results.

Implementation of RHS-updating in Bayesian stochastic search variable
selection

Model

The above updating schemes to estimate SNP effects were implemented for a model that is
commonly referred to as Bayes SSVS (Stochastic Search Variable Selection) [16,17] that is
solved using Gibbs sampling and implemented in a computer program written in Fortran 95.
The genomic model is generally described as:

� � �� � �H � �,
where y contains phenotypic records, µ is the overall mean, � is a vector of 1’s, � is an m × n
matrix that contains the scaled and centered genotypes of all individuals, H contains the
(random) allele substitution effects for all loci, and e contains the random residuals. The
specific parameterization of the genomic model that results in the Bayes SSVS model is
described below.

Prior densities

The likelihood of the Bayes SSVS model conditional on all unknowns is assumed to be
normal:

�?I:|�, H, J/�C � K?I: � � � 	:′H, J/�C
where xi denotes the SNP genotypes of animal i. Definitions of the unknowns and their prior
distributions are described hereafter.

The prior for µ was a constant. The residual variance J/� has a prior distribution of �?J/�C �χ��?�2,0C, which yields a flat prior.

The prior for αj depends on the variance JO� and the QTL indicator I j = 1:

P�|Q, JO� � R~KT0, JO�100V 	WX9Y	Z� � 0
~K?0, JO�C	WX9Y	Z� � 1	 .

The prior distribution for the indicator variable I j is:

��Z�	� � Bernoulli?1 � QC
where π was assigned a value of 0.999, and σc� has the following prior distribution:

�?σO�C � χ��?dO, SO�C,
where να is the degrees of freedom, set to 4.2 according to [12,15], and the scale parameter SO�

is calculated as SO� � σfg, ?hg��Chg where σfα� is computed as [1]:

σfO� � A 100100 � Q?1 � 100CBJ0�Y

where n is the number of loci.

Conditional posterior densities

The conditional posterior density of αj is:

KTαij;	 ω�σ�/�	�′	� � k�V

where αj� is the conditional mean of the allele substitution effect at locus j, whose

computation was explained previously, k� � m�*j+,*jn, , and

ω� � 1 if Z� � 1

ω� � 100 if Z� � 0.

The conditional posterior density of σc� is an inverse-χ2 distribution:

σα
�|α	~	χ��?dO � Y, Sα� �o′Hj�C

where Hj� is a vector with squares of the current estimates of the allele substitution effects of
all loci, weighted by vector o, which contains values of 1 or 100 for each locus.

Finally, the conditional posterior distribution of the QTL-indicator I j was (following the
notation in [19]):

Pr�Z� � 1� � f?r�|Z� � 1C?1 � QCf�r�sZ� � 0�Q � f?r�|Z� � 1C?1 � QC
where 1 − π (π) is the prior probability that Z� � 1 (Z� � 0), r� � 	�t�∗ � 	�t	�αj� , where �∗
contains the conditional phenotypes as defined previously, and u?r�|Z� � δC, where δ is either

0 or 1, and is proportional to
�√w e�x�,,y, where z � �	�′	��� σg�,ω� � 	�′	�σ/�. It should be noted that z depends on Z� through its dependence on ω�, i.e. if Z� � 0 (Z� � 1) then ω� � 100	?ω� � 1C.

Finally, the conditional posterior density of σ/� is an inverse-χ2 distribution:

σ/�|9	~	χ��?{ � 2, �′�C
where { is the number of animals with records and � is a vector with the current residuals.

Derivation of the optimal number of SNPs included per RHS-block

Simulated data - CPU time

To investigate to what extent the CPU time of the newly developed algorithms depended on
the number of individuals included in the analysis, a dataset of 420 SNPs was simulated. The
number of SNPs was limited to 420, to reduce total computation time, and this limited
number of SNPs was sufficient to compare the relative computation time of the different
algorithms because total CPU time scales linearly with the number of SNPs. Further details
of the simulation are not included here because the aim of the subsequent analysis was only
to compare CPU time. The size of the dataset was increased with steps of 500 individuals
from 500 to 100 000 individuals and each dataset was analysed 11 times. The newly
developed RHS-updating algorithm was used in nine of those analyses, using one to nine
SNPs per RHS-block. The tenth analysis was an implementation using original residual
updating. The eleventh analysis implemented improved residual updating. Each analysis was
run for 900 iterations, and the CPU time for these 900 iterations was recorded.

Simulated data - RAM use

To investigate to what extent the required amount of RAM of the newly developed algorithm
depended on the number of individuals in the analysis, a dataset of 50 000 SNPs was
simulated. The number of individuals was increased in steps of 5000 individuals from 500 to
95 500 individuals. This number of SNPs and animals yielded a range of datasets with
dimensions that corresponded to the size of currently used practical datasets and each dataset
was analysed 11 times. These analyses involved the same models and settings as used to
evaluate CPU time. Each analysis was run until the iterations started, i.e. when the maximum
RAM requirement was reached, at which point the used RAM was recorded and the process
was aborted. The maximum RAM requirement was measured by retrieving the process ID
and then storing the RAM use for that process. Details of this procedure are provided in the
Appendix 1.

All comparisons were run on a Windows XP-64 desktop pc with an Intel(R) Xeon(R) 64-bit
CPU E5420 with a clock speed of 2.50 GHz. Comparisons on CPU time were also run on a
Linux platform with an AMD Opteron 8431 64-bit CPU with a clock speed of 2.39 GHz
running Ubuntu 12.04.3. The programs were compiled with the Intel® Fortran Compiler
11.0.075 for Windows and the Intel® Fortran Compiler 13.0.079 for Linux.

Results

CPU time

The required CPU time on the Windows workstation for the RHS-updating algorithm
depended strongly on the number of SNPs included per RHS-block (Figure 2). In all cases,
including more than six SNPs per RHS-block resulted in a longer CPU time. Conversely,
including less than four or five SNPs per RHS-block also resulted in a longer CPU time,
especially when the number of individuals was large. The solid line in Figure 2 shows that
the optimal number of SNPs included per RHS-block that results in the lowest CPU time,
changed with the number of individuals in the analysis. This is further illustrated in Figure 3,
where the actual number of SNPs that gave the minimum CPU time is plotted against the
number of individuals in the analysis. Although there was a clear trend, across the number of
individuals, especially with a larger number of individuals, there was no exact threshold
when either five or six SNPs were included per RHS-block, which indicates that there was
very little difference in CPU time when five or six SNPs were used. Similar trends in CPU
time were observed when running the analysis on the Linux server, for which slightly longer
CPU times were generally observed (Figure 4). Nevertheless, with our implementation of
RHS-updating, it appears to be appropriate to include two SNPs when the number of
individuals is less than 1000, three SNPs when it is between1000 and 2500, four SNPs when
it is between 2500 and 11 000, five SNPs when it is between 11 000 and 50 000, and six
SNPs when it is between 50 000 and 100 000.

Figure 2 CPU time on a Windows workstation for RHS-updating using different
numbers of SNPs per RHS-block. The reported time is for Gibbs chains of 900 iterations;
the algorithm used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an
increasing number of individuals (500 to 100 000); the black line is the fitted curve through
the number of SNPs that gave the minimum CPU time.

Figure 3 The number of SNPs included per RHS-block in RHS-updating, that yielded
the minimum computing time. Minimum computing time was evaluated for an increasing
number of individuals (500 to 100 000).

Figure 4 CPU time on a Linux server for RHS-updating using different numbers of
SNPs per RHS-block. The reported time is for Gibbs chains of 900 iterations; the algorithm
used one to nine SNPs per RHS-block, and the data contained 420 SNPs and an increasing
number of individuals (500 to 100 000); the black line is the fitted curve through the number
of SNP that gave the minimum CPU time.

The CPU time for the Gibbs chain using the optimal number of SNPs per RHS-block was
compared to the CPU time of the original and improved residual updating schemes across the
different numbers of animals included in the analysis (Figure 5). Compared to original
residual updating, improved residual updating reduced CPU time on the Windows
workstation by 35.3 to 43.3%, and RHS-updating reduced CPU time by 74.5 to 93.0%.
Improvements in terms of CPU time were similar for the Linux server (results not shown).
The required CPU time for pre-processing the data was slightly larger for the RHS-updating
versus the residual updating algorithm. On the Windows workstation, for the dataset with 95
500 animals and 50 000 SNPs, the time to transform the SNP data into the (integer) coding,
required 954 s and 1217 s, respectively, for the residual updating and the RHS-updating

algorithm. These results show that, although most of the reduction in CPU time achieved by
RHS-updating originated from evaluating SNPs within RHS-blocks rather than individually,
at the same time, the first step to implement improved residual updating already makes an
important contribution to the reduction in CPU time.

Figure 5 CPU time on a Windows workstation using two residual updating schemes and
RHS-updating. CPU time for a Gibbs chain of 900 iterations was evaluated for 420 SNPs
and an increasing number of individuals (500 to 100 000); the reported CPU time for the
RHS-updating scheme is the minimum computing time of nine analyses that include one to
nine SNPs per RHS-block, for each number of individuals.

RAM use

The required amount of RAM for the RHS-updating algorithm also depended on the number
of SNPs included per RHS-block (Figure 6). In nearly all cases, including more than six
SNPs per RHS-block resulted in more RAM used. Conversely, including less than three to six
SNPs per RHS-block also resulted in more RAM used, especially when the number of
individuals was large. The pattern in RAM use (Figure 6), changed with the number of
individuals in the dataset, in a pattern that was quite similar to that of the CPU time. This
implies that choosing an optimal number of SNPs per RHS-block based on required CPU
time, yields an algorithm that is also close to optimal in terms of RAM use.

Figure 6 RAM use (Gb) for RHS-updating with one to nine SNPs per RHS-block. RAM
use was evaluated for 50 000 SNPs and an increasing number of individuals (500 to 95 500).

In Figure 7, the amount of RAM used is plotted for all three algorithms, for datasets with 50
000 SNPs and 500 to 95 500 individuals. Note that both residual updating algorithms
required about the same amount of RAM, therefore only one curve was plotted for residual
updating. In the case of RHS-updating, for each number of individuals, either the number of
SNPs per RHS-block that gave the minimum CPU time or the number that gave the minimum
amount of required RAM was used. Both sets of numbers of SNPs per RHS-block gave very
similar answers. Compared to the residual updating schemes, the reduction in required RAM
for RHS-updating ranged from 13.1 to 66.4%.

Figure 7 RAM use (Gb) for residual updating versus RHS-updating. For RHS-updating,
the number of SNPs per RHS-block was set to the number that gave either the minimum
computing time (min. time) or the minimum RAM requirement (min. RAM); RAM use was
evaluated on a Windows workstation for a dataset with 50 000 SNPs and for an increasing
number of individuals (500 to 95 500); note that only one curve is plotted for residual
updating, because both residual updating algorithms require practically the same amount of
RAM.

As shown in Figure 7, for a fixed number of SNPs, the RAM use of the residual updating and
the RHS-updating algorithms were linearly related to the number of animals included. This
agrees with the derived formulas for expected RAM use in Table 1. The ability of those
equations to predict measured RAM use, was investigated by regressing measured RAM use
on predicted RAM use for each method, based on datasets containing 50 000 SNPs and 500
to 95 500 animals. The results of those regressions are presented in Table 2 and show that the
equations predicted RAM use with an R2 value of 1.0 in all cases. The intercepts of the
regression generally had a positive value, indicating that the prediction equation missed only

a small proportion of the used RAM. This value became substantial for the RHS-updating
algorithm when the number of SNPs per RHS-block was equal to 7 or more because, e.g., the
relative size of the array that stores the number of individuals for each RHS-group increases
considerably when the number of RHS-blocks increases.

Table 2 Coefficients of the regression of measured on predicted RAM requirements for
original and improved residual updating, and for RHS-updating
Algorithm Intercept Slope R2

Original residual updating 0.014 0.983 1.000
Improved residual updating 0.014 0.983 1.000
RHS-updating (1)1 0.015 0.981 1.000
RHS-updating (2) 0.015 0.983 1.000
RHS-updating (3) 0.016 0.985 1.000
RHS-updating (4) 0.024 0.981 1.000
RHS-updating (5) 0.035 0.983 0.999
RHS-updating (6) 0.065 0.977 0.996
RHS-updating (7) 0.229 0.989 1.000
RHS-updating (8) 0.659 0.990 1.000
RHS-updating (9) 1.948 0.992 1.000
1 The number between brackets indicates the number of SNPs per RHS-block.

Discussion

Two alternative algorithms were presented that can be implemented in various genomic
prediction models for fast computing of SNP effects. The algorithms replace the originally
suggested residual updating algorithm [14], without affecting the results obtained.
Differences in results between algorithms were similar to those within algorithms when using
different random seeds and correlations between different sets of results were greater than
0.99 (results not shown). Both algorithms use the characteristic that only three different
genotypes are observed for each SNP. Both algorithms can accommodate loci with more than
three genotypes, but this may reduce or eliminate their benefit in terms of computing time
over original residual updating schemes. The limitation on the number of genotypes per locus
implies that imputed genotypes defined as gene contents cannot be used for individuals in the
training data in the algorithm. Nevertheless, a simple transformation of gene contents to the
most likely genotype overcomes this problem. This transformation could for instance be (on a
0-2 scale): genotypes ≤ 0.5 are set to 0, genotypes ≥ 1.5 are set to 2, and all other genotypes
are set to 1. Such transformations for imputed genotypes in the training data are expected to
have a minor impact on the estimated SNP effects, provided that the genotypes are imputed
with reasonable accuracy. Using gene contents for selection candidates, i.e. individuals
whose genetic merit is predicted using SNP effects estimated from the training data, is not
inhibited by the proposed algorithms, because their predicted genetic merit can simply be
obtained outside the algorithm by multiplying their gene contents with allele substitution
effects that are estimated in the algorithm. The literature shows that for selection candidates,
predictions differ when gene contents or the most likely genotypes are used [20].

The residual updating algorithms were implemented using standard (e.g. dot_product) Fortran
functions. Computer-specific optimized libraries are available [21,22] that can considerably
reduce the CPU time required for, e.g., vector and matrix multiplications [23]. Using such
libraries may have a larger impact on CPU time for the residual updating algorithms than for

the RHS-updating algorithm, since the former involves many more multiplications. However,
even when using such optimized libraries, the RHS-updating algorithm is still expected to be
considerably more efficient, because it drastically reduces the total number of required
operations.

It should be noted that the RHS-updating scheme requires slightly more overhead in terms of
computing time than the residual updating scheme, for instance to define the RHS-blocks and
the group coding within those blocks. Once RHS-blocks and group coding are defined, they
can be used in each iteration of the Gibbs chain. This may limit flexibility in the algorithm.
For instance, one way to improve mixing of the Gibbs chains, may be to permute the order of
evaluation of SNP effects between iterations. With the RHS-updating scheme, the order of
evaluation of SNP effects within RHS-blocks must be the same throughout the Gibbs chain,
such that group coding within RHS-blocks needs to be defined only once. Nevertheless, the
order of evaluation of the RHS-blocks can still be permuted. Furthermore, to avoid that
neighbouring SNPs are always evaluated in the same order, SNPs can be allocated to RHS-
blocks at random.

The RHS-updating scheme not only considerably reduced computing time, by up to 93%, but
also resulted in a reduction of the amount of RAM used of up to 66%. Due to the nature of
the RHS-updating algorithm, computing time and RAM use are linearly related with the
number of SNPs considered, similar to the residual updating algorithm. This implies that the
relative benefit of using the RHS-updating algorithm compared to the residual updating
algorithm is not affected by the number of SNPs included. In our implementation, which is
written in Fortran 95, group codes within RHS-blocks were stored as an integer(2) variable,
while the genotypes in the original implementation with residual updating were stored as an
integer(1) variable. It should be noted that storing group codes as integer(1) would lead to a
further reduction in RAM requirements of almost 50%, because the array that stores the
group codes uses close to 100% of the RAM used by the algorithm. Storing group codes as
integer(1), implies that the number of SNPs included per RHS-block should be equal to four
or less, i.e. the maximum value an integer(1) variable can take is equal to 127, and including
4 (5) SNPs per RHS-block yields 34 = 81 (35 = 243) groups; the maximum value an integer(2)
variable can take, is equal to 32 767. This means that a maximum of nine SNPs can be
included per RHS-block, otherwise the group code must be stored as integer(4), i.e. including
9 (10) SNPs per RHS-block yields 39 = 19 683 (310 = 59 049) groups. Our results show that
with the largest number of individuals considered (100 000), the optimal number of SNPs
included per RHS-block was equal to six. This suggests that it is unlikely that a number of
individuals in the data that justifies including more than nine SNPs per RHS-block, and
therefore requires storing group codes as integer(4), is reached in the near future.

In our implementation of RHS-updating, each RHS-block containing s SNPs is assumed to
contain all 3s possible groups, which is most likely not always the case. Moreover, clever
grouping of SNPs within RHS-block can reduce the observed number of groups within each
RHS-block. Such redundancy could be used to further reduce computing time, but would also
likely result in a more complicated algorithm.

Conclusions

Two algorithms are presented to estimate SNP effects that can be implemented in a range of
different genomic prediction models, as an alternative to the original residual updating

scheme. The first alternative algorithm uses residual updating, here termed improved residual
updating, and takes advantage of the characteristic that the predictor variables in the model
(i.e. SNP genotypes) have only three possible values. The second alternative algorithm, here
termed “RHS-updating”, extends the idea of improved residual updating across multiple
SNPs. The improved residual updating algorithm achieved a reduction in computing time of
35.3 to 43.3%, but did not change the amount of RAM used, compared to the original
residual updating scheme. The RHS-updating algorithm achieved a reduction in computing
time of 74.5 to 93.0% and a reduction in RAM use of 13.1 to 66.4%, compared to the original
residual updating scheme. Thus, the RHS-updating algorithm provides an interesting
alternative to reduce both computing time and memory requirements.

Competing interests

The author declares that he has no competing interests.

Authors’ contributions

MPLC has invented and developed the idea of RHS-block updating, implemented it in an
algorithm, designed and performed the analyses and drafted the manuscript. All authors read
and approved the final manuscript.

Acknowledgements

Two anonymous reviewers are thanked for their very valuable comments on the manuscript
that helped to improve it. The author acknowledges financial support of CRV BV (Arnhem,
the Netherlands).

Appendix 1. Pseudo-code to measure maximum RAM
requirement

The maximum RAM requirement was measured by retrieving the process ID and then storing
the RAM use for this particular process. On the Windows OS, this was done using the
following Fortran code:

PROGRAM GIBBS

USE DFPORT !Module that contains function “GETPID”

IMPLICIT NONE

INTEGER :: PROC_ID

CHARACTER(LEN = 47) :: SYS_CALL

…

PROC_ID = GET_PID() !Retrieve process ID of the current process

!Use DOS command “tasklist” to write RAM use to file “tasklist.txt”

SYS_CALL = "tasklist /fi ""PID eq "" > tasklist.txt"

WRITE(SYS_CALL(23:29),'(i7)')PROC_ID

CALL SYSTEM(SYS_CALL)

…

END PROGRAM GIBBS

References

1. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL: Whole-genome
regression and prediction methods applied to plant and animal breeding. Genetics 2013,
193:327–345.

2. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM: Genomic
prediction in animals and plants: simulation of data, validation, reporting, and
benchmarking. Genetics 2013, 193:347–365.

3. Lund M, de Roos S, de Vries A, Druet T, Ducrocq V, Fritz S, Guillaume F, Guldbrandtsen
B, Liu Z, Reents R, Schrooten C, Seefried F, Su G: A common reference population from
four European Holstein populations increases reliability of genomic predictions. Genet
Sel Evol 2011, 43:43.

4. Rincon G, Weber KL, Van Eenennaam AL, Golden BL, Medrano JF: Hot topic:
Performance of bovine high-density genotyping platforms in Holsteins and Jerseys. J
Dairy Sci 2011, 94:6116–6121.

5. Hayes B, Anderson C, Daetwyler HD, Fries R, Guldbrandtsen B, Lund M, Boichard D,
Stothard P, Veerkamp RF, Hulsegge I, Rocha D, Van Tassel CP, Coote D, Goddard M:
Towards genomic prediction from genome sequence data and the 1000 bull genomes
project. In Book of Abstracts of the 4th International Conference on Quantitative Genetics:
17-22 June 2012; Edinburgh. ; 2012:55.

6. Meuwissen THE, Goddard ME: Accurate prediction of genetic value for complex traits
by whole-genome resequencing. Genetics 2010, 185:623–631.

7. Hayashi T, Iwata H: EM algorithm for Bayesian estimation of genomic breeding
values. BMC Genet 2010, 11:3.

8. Shepherd RK, Meuwissen THE, Woolliams JA: Genomic selection and complex trait
prediction using a fast EM algorithm applied to genome-wide markers. BMC
Bioinformatics 2010, 11:529.

9. Meuwissen THE, Solberg TR, Shepherd R, Woolliams JA: A fast algorithm for BayesB
type of prediction of genome-wide estimates of genetic value. Genet Sel Evol 2009, 41:2.

10. Cai X, Huang A, Xu S: Fast empirical Bayesian LASSO for multiple quantitative
trait locus mapping. BMC Bioinformatics 2011, 12:211.

11. VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci 2008,
91:4414–4423.

12. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using
genome-wide dense marker maps. Genetics 2001, 157:1819–1829.

13. Stranden I, Christensen OF: Allele coding in genomic evaluation. Genet Sel Evol 2011,
43:25.

14. Legarra A, Misztal I: Computing strategies in genome-wide selection. J Dairy Sci
2008, 91:360–366.

15. Habier D, Fernando R, Kizilkaya K, Garrick D: Extension of the Bayesian alphabet for
genomic selection. BMC Bioinformatics 2011, 12:186.

16. Calus MPL, Meuwissen THE, De Roos APW, Veerkamp RF: Accuracy of genomic
selection using different methods to define haplotypes. Genetics 2008, 178:553–561.

17. Verbyla KL, Hayes BJ, Bowman PJ, Goddard ME: Accuracy of genomic selection using
stochastic search variable selection in Australian Holstein Friesian dairy cattle. Genet
Res 2009, 91:307–311.

18. Habier D, Fernando R, Dekkers J: The impact of genetic relationship information on
genome-assisted breeding values. Genetics 2007, 177:2389–2397.

19. Jia Y, Jannink J-L: Multiple-trait genomic selection methods increase genetic value
prediction accuracy. Genetics 2012, 192:1513–1522.

20. Mulder HA, Calus MPL, Druet T, Schrooten C: Imputation of genotypes with low-
density chips and its effect on reliability of direct genomic values in Dutch Holstein
cattle. J Dairy Sci 2012, 95:876–889.

21. Whaley RC, Dongarra JJ: Automatically tuned linear algebra software. In Proceedings
of the 1998 ACM/IEEE conference on Supercomputing: 7-13 November 1998: Orlando.
(CDROM). Washington, DC, USA: IEEE Computer Society; 1998:1–27.

22. Dongarra JJ, Du Croz J, Hammarling S, Duff IS: A set of level 3 basic linear algebra
subprograms. ACM TOMS 1990, 16:1–17.

23. Aguilar I, Misztal I, Legarra A, Tsuruta S: Efficient computation of the genomic
relationship matrix and other matrices used in single-step evaluation. J Anim Breed
Genet 2011, 128:422–428.

= 2

= 2

= 1

1. RHS(0,0)

2. RHS(1,0)

3. RHS(2,0)

4. RHS(0,1)

5. RHS(1,1)

6. RHS(2,1)

7. RHS(0,2)

8. RHS(1,2)

9. RHS(2,2)

= 1

= 0

= 0

Figure 1

Figure 2

0

1

2

3

4

5

6

7

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

#
S

N
P

 p
e

r
R

H
S

-b
lo

c
k

 (
th

a
t

g
a

v
e

 m
in

in
u

m
 C

P
U

 t
im

e
)

Number of individualsFigure 3

Figure 4

0

200

400

600

800

1000

1200

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

C
P

U
 t

im
e

 p
e

r
9

0
0

 i
te

ra
ti

o
n

s
 (

fo
r

4
2

0
 S

N
P

)

Number of individuals included

Original residual updating

Improved residual updating

RHS-updating

Figure 5

Figure 6

0

1

2

3

4

5

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

M
e

m
o

ry
 u

s
e

 (
G

b
)

Number of individuals

Residual updating

RHS-updating (min. time)

RHS-updating (min. memory)

Figure 7

	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

