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Abstract  

Background 

In livestock populations, missing genotypes on a large proportion of animals are a 

major problem to implement the estimation of marker-assisted breeding values using 

haplotypes. The objective of this article is to develop a method to predict haplotypes 

of animals that are not genotyped using mixed model equations and to investigate the 

effect of using these predicted haplotypes on the accuracy of marker-assisted breeding 

value estimation.  

Methods 

For genotyped animals, haplotypes were determined and for each animal the number 

of haplotype copies (nhc) was counted, i.e. 0, 1 or 2 copies. In a mixed model 

framework, nhc for each haplotype were predicted for ungenotyped animals as well as 

for genotyped animals using the additive genetic relationship matrix. The heritability 

of nhc was assumed to be 0.99, allowing for minor genotyping and haplotyping errors. 

The predicted nhc were subsequently used in marker-assisted breeding value 

estimation by applying random regression on these covariables. To evaluate the 

method, a population was simulated with one additive QTL and an additive polygenic 

genetic effect. The QTL was located in the middle of a haplotype based on SNP-

markers. 

Results 

The accuracy of predicted haplotype copies for ungenotyped animals ranged between 

0.59 and 0.64 depending on haplotype length. Because powerful BLUP-software was 
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used, the method was computationally very efficient. The accuracy of total EBV 

increased for genotyped animals when marker-assisted breeding value estimation was 

compared with conventional breeding value estimation, but for ungenotyped animals 

the increase was marginal unless the heritability was smaller than 0.1. Haplotypes 

based on four markers yielded the highest accuracies and when only the nearest left 

marker was used, it yielded the lowest accuracy. The accuracy increased with 

increasing marker density. Accuracy of the total EBV approached that of gene-

assisted BLUP when 4-marker haplotypes were used with a distance of 0.1 cM 

between the markers. 

Conclusions 

The proposed method is computationally very efficient and suitable for marker-

assisted breeding value estimation in large livestock populations including effects of a 

number of known QTL. Marker-assisted breeding value estimation using predicted 

haplotypes increases accuracy especially for traits with low heritability. 

 

Background  

In livestock, many QTL regions have been identified for quantitative traits [1]. In 

some cases, fine mapping has also led to the detection of causative mutations, e.g. 

DGAT1 in dairy cattle for milk yield and milk composition [2,3] and IGF2 in pigs for 

body weight [4]. In breeding programs these QTL-regions can be utilized in marker-

assisted selection (MAS). Three types of markers can be used: markers in linkage 

equilibrium with the QTL (LE-MAS), markers in linkage disequilibrium with the 

QTL (LD-MAS) and the causative mutation itself as in gene-assisted selection (GAS). 
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GAS leads to the highest genetic gain, because no recombination exists between the 

marker and QTL [5]. However, identifying the gene is not easy and is resource 

demanding [1]. The amount of QTL variation explained by markers in LD-MAS can 

be increased by increasing the marker density and thereby increasing the LD between 

markers and QTL. Alternatively, combining alleles of different marker loci into 

haplotypes is expected to increase the proportion of captured QTL variance as well. 

Based on data of a whole genome scan with 9323 SNP-markers in Angus cattle, 

Hayes et al. [6] have reported that 4 and 6-marker haplotypes increased the accuracy 

of MAS more than the single marker in highest LD with the QTL. However, 2-marker 

haplotypes performed worse than the best marker.  

One of the challenges when applying MAS in livestock populations is that often a 

large part of the population is not genotyped, i.e. some animals have only phenotypes, 

some have only genotypes and others have both genotypes and phenotypes. Several 

methods have been proposed to overcome these differences. For LE-MAS, one would 

like to apply a method that uses identity-by-descent (IBD) information of haplotypes 

to properly account for relationships between haplotypes of related animals and to 

account for phase differences between markers and QTL in different families [7]. 

Creation of inverse IBD-matrices is, however, very time consuming [8]. With high-

density SNP-chips, LD-MAS can be applied without having to use IBD-matrices. 

With LD-MAS, either flanking markers or identical-by-state haplotypes (IBS) can be 

used in marker-assisted breeding value estimation. When using flanking markers in 

MAS, genotype probabilities could be calculated with iterative peeling methods 

[9,10,11,12,13] but these are time consuming. Gengler et al. [14,15] have proposed a 

straightforward and quick method to predict genotype probabilities and gene contents 

for bi-allelic markers using a mixed model methodology, where gene content is the 



 5

number of positive (negative) alleles (i.e. 2, 1, 0 for AA, Aa, aa). For ungenotyped 

animals, the accuracy of predicted gene contents is similar whether mixed model 

equations or single-marker iterative peeling are used [8, 14]. Gengler et al. [14] 

suggested that the method can also be applied in the case of multi-allelic markers. 

Multi-marker IBS haplotypes can be considered as a special form of multi-allelic 

markers, making the mixed model methodology a candidate method to predict 

haplotypes for ungenotyped animals. 

The objective of this article is to develop a method to predict haplotypes of animals 

that are not genotyped using mixed model equations and to investigate the effect of 

using those predicted haplotypes on the accuracy of marker-assisted breeding value 

estimation. The method is evaluated using Monte Carlo simulation, varying haplotype 

length, heritability of the trait and distance between the markers. The method is 

compared to gene-assisted and conventional breeding value estimation, which yield, 

respectively, the upper and lower limit of accuracy. 

 

Methods 

 

Prediction of haplotypes with missing genotypes  

Consider a situation where a QTL-region is mapped for a trait, without having 

identified the causative mutation and where some animals in the population are 

genotyped for SNP-markers in that region, but most of them are not genotyped, which 

is very common in animal breeding populations. In this study we would like to use 
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IBS-haplotypes in marker-assisted breeding value estimation. When the haplotype is 

based on the single SNP-marker closest to the QTL, the method of Gengler et al. [14, 

15] can be used to predict the missing ‘gene content’, the number of A-alleles, if there 

are A and a-alleles. The method of Gengler et al. [14,15] uses the additive genetic 

relationship matrix in a mixed model setting to predict the gene contents of those 

animals not genotyped based on genotyped relatives. This method can not be applied 

directly for haplotypes based on multiple markers, because discrete haplotypes can 

not be directly constructed based on predicted continuous gene contents of SNP-

markers for ungenotyped animals. However, this procedure can be easily modified to 

apply to a situation with haplotypes based on multiple markers. Consider that 

haplotypes are based on two bi-allelic markers, one on each side of the QTL. There 

are four possible haplotypes. For every genotyped animal, one can infer how many 

copies it carries for each haplotype ( nhc = number of haplotype copies), which is 0, 1 

or 2 (see Table 1 for a small example). This is in essence the same as the ‘gene 

content’ for a bi-allelic locus and the same mixed model methodology with the 

additive genetic relationship matrix can be applied to predict the nhc  for each 

haplotype for the ungenotyped animals. In the case of n  haplotypes this can be 

modeled as: 

 

inhciinhci ednhc ++= µ         (1) 

 

where inhc  is the number of copies of haplotype i (which is 0, 1 or 2 effectively), 

inhcµ  is the population mean number of copies of haplotype i , id  is the EBV for inhc  
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and 
inhce  is the residual of inhc . Although 2

1

=∑
=

n

i
inhc  for each animal, it is assumed 

that the haplotypes are independent from each other; therefore n  univariate mixed 

model analyses can be performed. Analogous to gene contents for a bi-allelic locus 

[14], this can be formulated in mixed model matrix notation as: 
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where 1  is a vector of ones, M  is a design matrix linking d  with ynhc , 1A −  is the 

inverse additive genetic relationship matrix, λ  is the variance ratio of residual 

variance and additive genetic variance for nhc  allowing for a small proportion of 

genotyping and haplotyping errors or recombination 99.0/01.0/ 22 ==
nhcanhce σσλ , d  

is a vector with the EBV for nhc  with yd  for genotyped animals and xd  for 

ungenotyped animals,  ynhc  is a vector with observed nhc  of genotyped animals and 

is set to missing for ungenotyped animals. The heritability assumed for nhc  is 0.99. 

Basically, with no genotyping or haplotyping errors, iinhc du +  (the predicted nhc ) 

should be equal to the phenotype (the true nhc ) for genotyped animals, implying a 

heritability of 1.0. In the case of haplotypes, recombinant haplotypes can be 

transmitted from one parent to its offspring. In such a case, the recombinant haplotype 

can not be fully explained in the model by the haplotypes of the parent. This decreases 

the parent-offspring regression, i.e. decreasing the heritability. Here we set the 
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heritability to 0.99 to allow for some small proportions of genotyping and haplotyping 

errors and recombination. Preliminary analysis showed no effect when the heritability 

was changed to 0.95. 

 

Marker-assisted breeding value estimation using predicted haplotypes 

To include the effects of the haplotypes to perform marker-assisted breeding value 

estimation using best linear unbiased prediction (MABLUP), these nhc  can be used 

as covariables in random regression, where inclusion as a random effect is preferred 

so that effects will be regressed towards zero when there is hardly any phenotypic 

information, e.g. a certain haplotype appears only in one animal with a phenotypic 

record. Assuming no other systematic environmental effects, the model is as follows: 

 

( ) ehchnuy
n

i
iipol +∑ ×++= ˆµ        (3) 

 

where y  is the phenotype, µ  is the overall mean and modeled as a fixed effect, polu  

is the random polygenic EBV, iinhci dchn += µˆ , which is the predicted number of 

copies of haplotype i , ih  is the random regression coefficient for haplotype i  and e  

is the residual. In matrix notation the model can be summarized as: 
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where X  and Z  are the design matrices for fixed effects and polygenic breeding 

values, respectively, the matrix W  contains the chn ˆ  for  all haplotypes,  polλ  and hλ  

are respectively the variance ratios for the polygenic breeding values and the random 

regression on ichn ˆ , b  is the vector with solutions for fixed effects (in this case only 

the mean), polu  is the vector with polu  and ih  is the vector with ih . The variance of 

ih  is 22 5.0
qtlAh σσ =  (see Appendix for derivation), where 2

qtlAσ  is the additive genetic 

QTL-variance, and the variance of polu  is 22

polApolu σσ = , where 2

polAσ  is the additive 

genetic variance due to the polygenic effect. Equations (3) and (4) can be considered 

as a generalization of the method by Gengler et al. [14,15] to multi-allelic markers 

and haplotypes. 

 

Evaluation of method 

Simulation 

Monte Carlo simulation was used to evaluate the method. The simulation scheme 

represented a nested full-sib half-sib design (multiple offspring per mating and dam 

nested within sire) with discrete generations which is common in commercial animal 

breeding programs. The simulation scheme was identical to that reported in Mulder et 

al. [8]. One trait was simulated with additive genetic effects of one bi-allelic QTL 
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qtlA , a polygenic additive genetic effect polA  and a residual effect e  

( eAAP polqtl ++= ). All animals had phenotypic records. Because the method of 

MABLUP relies on linkage disequilibrium (LD) between markers and QTL, first, 100 

generations of random mating were performed prior to the data collection scheme 

(generation 101 – 105).  

In the first 100 generations, 50 sires and 50 dams were randomly mated each 

generation. The QTL and 20 bi-allelic markers were placed on one 1M long 

chromosome. The QTL was placed in the middle of the chromosome and the markers 

were equally spaced, their distance varying from 0.1 to 5cM. The QTL was in the 

middle of the marker bracket between marker 10 and 11. In the founder generation, all 

markers and the QTL were in linkage equilibrium and had a fixed allele frequency of 

0.5. The QTL-variance 2

qtlAσ  was set to 15% of the total genetic variance, when the 

allele frequency is 0.5. The allele substitution effect was set to pqa
qtlA 2/2σ= , 

assuming that the allele frequencies p  and q  are 0.5, which is the case in the founder 

generation. Recombination rates were calculated using Haldane’s mapping function 

[16]. During these 100 generations, some markers or the QTL became fixed due to 

drift.  

After establishing LD, from generation 101 onwards and for each generation 50 sires 

and 250 dams were selected based on conventional BLUP-EBV (Equation (3) without 

haplotype effects) and randomly mated to produce 2,000 offspring. Each sire was 

mated to five dams and each dam produced four male and four female offspring, 

resulting in that each sire had 40 half-sib offspring, five full-sib groups of eight full-

sibs. A total of five generations of phenotypic data (generation 101 – 105) were 
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created and used in breeding value estimation (10,000 animals in total). The animals 

of generation 101 served as base generation in the pedigree. The generations 102 - 

104 were used to create linkage disequilibrium due to selection [17].  

In generation 101, simulated polygenic effects were sampled from ),0( 2

polAN σ , where 

2

polAσ  is the polygenic genetic variance. In subsequent generations polygenic effects 

were sampled from ( ))1(5.0,5.05.0 2

,, ppolAdpolspol fAAN −+ σ , where pf  is the average 

inbreeding coefficient of the parents. Inbreeding coefficients were calculated using the 

Meuwissen and Luo [18] algorithm. Residual effects were sampled from ),0( 2

eN σ , 

where 2

eσ  is the residual variance.  

The overall heritability was set to 0.03, 0.10 or 0.30, while the QTL explained 15% of 

the total genetic variance when the allele frequency was 0.5 as it was in the founder 

generation. The phenotypic variance was 1.0 in all situations when the allele 

frequency of the QTL was 0.5. The realized variance of the QTL was lower due to 

deviations of the allele frequency from 0.5 and re-estimated in generation 101. Results 

were based on 200 effective replicates after discarding the replicates with minor allele 

frequency of the QTL in the last generation (generation 105) less than 0.05. Averaged 

over all effective replicates, the average allele frequency of the negative QTL-allele 

was 0.63 in generation 101 before selection started and deviated from 0.5, because in 

replicates with allele frequencies closer to 0, the QTL was more likely to become 

fixed in generations 101-105 due to selection. The used parameter values are listed in 

Table 2.  
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Haplotype methods used for marker-assisted breeding value estimation 

In this study we used three types of haplotypes: 1) the closest neighboring left marker 

of the QTL is used as a single-marker haplotype (NM), 2) both flanking markers 

closest to the QTL-locus are used to form a 2-marker haplotype (HAP2) and 3) on 

both sides the two markers closest to the QTL are used to form a 4-marker haplotype 

(HAP4). In the case of NM, Equation (3) and (4) reduced to the method by Gengler et 

al. [14,15] with the difference that in this case it was not the causative mutation, but a 

linked marker. In addition, 22 ασ =h , where α  is the allele substitution effect (see 

equation A1 in the Appendix), because we modeled only one SNP marker allele. The 

markers chosen to form haplotypes had minor allele frequencies of at least 5% in 

generation 105. Haplotypes were known from the simulation and thus, phasing was 

not needed. 

 

Genotyping and breeding value estimation 

In generation 105, the breeding program starts with MABLUP according to Equation 

(3) and (4) using the three different haplotype methods. We simulated three 

genotyping scenarios: (1) only sires and males in the last generation are genotyped 

and (default) (2) all males are genotyped and (3) all animals are genotyped. In 

scenario 1 and 2, females are not genotyped. In addition to MABLUP, gene-assisted 

BLUP (GABLUP) and conventional BLUP (CONBLUP) are also performed for 

comparison. For GABLUP, it is assumed that all animals are genotyped for the QTL. 

For GABLUP the model is equal to Equation (3), with the difference that the true 

gene content is used as nhc  and the variance is the same as for NM. For CONBLUP, 

Equation (3) is used without regression on nhc  and the variance of the additive 



 13

genetic effect is set to 222

qtlApolAu σσσ += . For all evaluations, mixed model equations 

were solved using MiX99, which makes use of the preconditioned conjugate gradient 

algorithm [19]. The mixed model equations were considered converged when the 

relative difference between the left-hand and right-hand sides of the mixed model 

equations was smaller than 1.0 * 10
-10

.  

Accuracies were calculated as correlations between estimated and true breeding 

values. The QTL-EBV was calculated as ( )∑ ×
n

i
ii hchn ˆ  for each animal. The total EBV 

was calculated as the sum of the QTL-EBV and the polygenic EBV. Accuracies of 

MABLUP were compared to those of GABLUP and CONBLUP. The accuracies of 

GABLUP and CONBLUP can be considered as the upper and lower limits for the 

MABLUP accuracy. In addition, regressions of true breeding values on estimated 

breeding values were calculated to get an idea of the over- (regression coefficient < 

1.0) or underestimation (regression coefficient > 1.0) of the variance of EBV. Bias of 

estimated breeding values was calculated as estimated breeding values minus true 

breeding values. In addition, accuracies of chn ˆ  were calculated as correlations 

between estimated and true nhc  and regressions of true on estimated nhc  were 

calculated.   

 

Proportion of QTL-variance explained by the haplotypes 

The proportion of QTL-variance explained by the three different haplotypes NM, 

HAP2 and HAP4 was calculated to assess whether using IBS-haplotypes was suitable. 

The proportion of QTL-variance explained by the haplotypes is also a measure of 

linkage disequilibrium between the haplotype and the QTL. For NM, the 2r  between 
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the marker and the QTL can be calculated as the squared correlation between them 

[20]. For multi-allelic haplotypes, such as HAP2 and HAP4, 2r  was calculated 

according to Equation (2) in Hayes et al. [6], based on an equation for multi-allelic 

markers by Zhao et al. [21]. 

 

Results  

 

Analysis of haplotypes 

 

Statistics of predicted number of haplotype copies 

Table 3 shows the mean, standard deviation and mean square error (MSE) for 

predicted number of haplotype copies ( nhc ) for ungenotyped animals as a function of 

the true number of haplotype copies. For all three methods, the predicted nhc  

increased with the true nhc  and a clear distinction was made in nhc  between animals 

carrying the haplotype or not. For genotyped animals the predicted nhc  closely 

resembled the true nhc . For ungenotyped animals, the absolute numbers decreased 

from NM towards HAP4, due to regression to the mean and the mean nhc  decreased 

from NM towards HAP4, albeit the difference between homozygotic carrier and non-

carrier is largest for HAP4. As a consequence, the MSE increased with increasing true 

nhc  for HAP2 and HAP4 and for HAP4 more than for HAP2. In general, the mean 

nhc  decreased with the frequency of the haplotype (results not shown).  
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Table 4 shows the accuracy of predicted nhc  and the regression of true nhc  on 

predicted nhc for ungenotyped females. The accuracy decreased from NM towards 

HAP4, especially for HAP4, due to recombination between genotyped ancestors and 

ungenotyped offspring. Especially for HAP4, the accuracy decreased when the marker 

distance increased, which is again due to a higher probability of recombination 

(results not shown). The regression of true nhc  on predicted nhc  was approximately 

1 for NM and HAP2, but somewhat lower for HAP4, due to the lower accuracy. 

 

Proportion of QTL-variance explained by haplotype 

Figure 1 shows the mean proportion of QTL variance (r
2
 ) explained by the haplotype 

as a function of marker distance. For all three methods, r
2
 decreased with increasing 

marker distance. The HAP4 method captured most of the QTL variance and NM the 

least. Figure 2 shows the frequency distribution of r
2
 values for the three methods at a 

marker density of 0.1 cM. It shows that HAP4 had the highest proportion of replicates 

with r
2
 values between 0.90 and 1.00. With NM and HAP2, a substantial proportion of 

replicates had r
2
 values below 20% indicating that the haplotype explained very little 

QTL-variance. 

 

Accuracy of EBV 

Effect of genotyping scenario 

Table 5 shows the accuracies of QTL-EBV, polygenic EBV and total EBV for 

genotyped males and ungenotyped females under different genotyping scenarios with 
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the three methods of MABLUP when the marker distance was 0.1 cM. The accuracy 

of polygenic and total EBV hardly changed when the number of genotyped animals 

increased. The accuracy of QTL-EBV increased only slightly with an increasing 

number of genotyped animals. This means that the use of predicted haplotypes in 

MABLUP did not negatively affect the accuracy of EBV. Because of the small 

differences in accuracy, in the rest of the article we only show results under the 

scenario where sires and males in the last generation were genotyped. 

   

Effect of marker density 

Figure 3 shows the accuracy of QTL-EBV (panel A and B) and total EBV (Panel C 

and D) for genotyped males (panel A and C) and ungenotyped females (panel B and 

D) as a function of marker distance using three different haplotype methods for 

MABLUP or using CONBLUP or GABLUP when all animals were genotyped. For 

genotyped males (Figure 3A) the accuracy of the QTL-EBV was between 0.22 and 

0.90 for NM, HAP2 and HAP4 and 1.0 for GABLUP. Among the three haplotype 

methods, HAP4 had the highest accuracy and NM the lowest. The accuracy decreased 

with increasing marker distance and more rapidly for HAP4 than for NM, due to a 

decreasing proportion of QTL variance explained by the haplotypes (Figure 1). For 

ungenotyped females (Figure 3B), the accuracy of the QTL-EBV was much lower 

than for genotyped males, between 0.15 and 0.57 for NM, HAP2 and HAP4, but with 

the same trends across marker distances as for genotyped animals. The MABLUP 

methods based on HAP2 and HAP4 were both able to increase substantially the 

accuracy of the total EBV of genotyped males in comparison to CONBLUP when the 

distance between the markers was small (Figure 3C). The accuracy of MABLUP with 
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HAP4 approached the accuracy of gene-assisted BLUP when the marker distance was 

0.1 cM or less. The advantage of MABLUP was negligible when the marker distance 

was large, e.g. 5 cM. For ungenotyped animals (Figure 3D), the increase in accuracy 

of total EBV of MABLUP over conventional BLUP was, however, negligible 

regardless of marker distance.    

Although the average accuracy of QTL-EBV was moderate to high for genotyped 

males when markers were separated by 0.1 cM, substantial variation existed between 

replicates (Figure 4). Especially with NM, the variation between replicates was large 

and even negative accuracies were obtained, although in a very small proportion of 

the replicates (5.5% of replicates). With HAP4, accuracies of QTL-EBV were always 

positive and in 86.5% of the replicates larger than 0.80. With HAP2 this proportion 

equaled to 60% and with NM only to 30.5%. The figure clearly shows that HAP4 had 

not only the highest average accuracy, but also the least variation in accuracy of QTL-

EBV.  

 

Effect of heritability 

Table 6 shows the accuracies of QTL-EBV, polygenic EBV and total EBV for 

genotyped males and ungenotyped females using different values of heritability in the 

three MABLUP methods when the marker distance was 0.1 cM. The accuracy of 

QTL-EBV increased with increasing heritability, as expected. However, the increase 

in accuracy of total EBV of MABLUP methods in comparison to CONBLUP was 

largest with a low heritability. For ungenotyped animals, the increase in accuracy with 

MABLUP in comparison to CONBLUP was smaller, e.g. from 0.35 to 0.37 with 

HAP4 at a heritability of 0.03, but the increase in accuracy was negligible when the 
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heritability was 0.30. HAP4 had in all cases the highest accuracies for QTL-EBV, 

polygenic EBV and total EBV, i.e. the ranking of the methods did not change. 

Table 7 shows the regression of true on estimated breeding values for different values 

of heritability for the three MABLUP methods when the marker distance was 0.1 cM 

for genotyped males and ungenotyped females. The regressions for QTL-EBV were 

substantially lower than 1.0 in the majority of the situations, except when the 

heritability was 0.03. This indicated that the variance of the QTL-effect was 

overestimated when the heritability was 0.10 and 0.30. HAP4 had regression 

coefficients closest to 1.0 indicating that in this case, overestimation was the smallest. 

Regressions for polygenic and total EBV were in most cases close to one. The 

variances of the polygenic EBV were slightly overestimated in all cases. The 

variances of the total EBV were slightly overestimated for genotyped males for 

CONBLUP and MABLUP and slightly underestimated for ungenotyped females with 

MABLUP, but overestimated with CONBLUP. Overall, the variance of total EBV 

was less biased with MABLUP than with CONBLUP. 

Table 8 shows the bias in estimated breeding values for different values of heritability 

using the three MABLUP methods and CONBLUP for genotyped males and 

ungenotyped females when the marker distance was 0.1 cM. The polygenic EBV were 

on average biased upwards and the QTL-EBV were biased downwards, or in other 

words the QTL-effects were underestimated, but the polygenic EBV absorbed this 

effect. The total EBV were biased upwards for all methods when the heritability was 

0.10 and 0.30, due to the shift of the estimated mean in the model, which was caused 

by genetic trend due to selection and the change in allele frequency of the QTL. Bias 

was largest for NM, whereas HAP2 and HAP4 were similar. Without selection total 
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EBV were unbiased (results not shown). There was hardly any difference in bias 

between genotyped males and ungenotyped females. Adding the overall mean to the 

EBV removed the bias in total EBV. It can be concluded that total EBV of MABLUP 

and EBV of CONBLUP were biased due to selection, but this bias did no affect the 

ranking of animals. 

 

Discussion  

 

In this study we developed a method to predict haplotypes of ungenotyped animals 

using pedigree information of genotyped animals in mixed model equations and we 

evaluated the use of these predicted haplotypes in marker-assisted BLUP. The method 

is an extension of Gengler et al. [14,15] to multi-allelic markers or haplotypes. The 

method was evaluated with Monte Carlo simulation. Clearly the predicted number of 

haplotype copies was regressed towards the mean and more so than the gene contents 

in Gengler et al. [14,15], especially when the frequency of a certain haplotype was 

low, which is more likely with longer haplotypes because of an increasing number of 

haplotypes. When using only a neighbor marker, the predicted gene contents were in 

the same range as in Gengler et al. [14,15]. Because of the almost-unity heritability 

the number of haplotype copies is hardly regressed towards the mean for genotyped 

animals. The accuracy of the predicted haplotypes was lower for HAP4 than for 

HAP2 and decreased with increasing marker distance due to the increased probability 

of recombination. Lowering the heritability might be an option, taking into account 

that the number of haplotype copies from parent to offspring is not fully heritable but 
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subject to recombination. However, BLUP is very robust against changes in 

heritability and preliminary results showed no effect when the heritability was 

changed to 0.95.  

The 4-marker haplotype gave the best results in marker-assisted breeding value 

estimation. It captured 90% of the QTL-variance when markers were separated by 0.1 

cM. Because of this high proportion of explained QTL-variance, the proportion of 

QTL-variance explained by the haplotype can not increase much, and therefore we did 

not consider longer haplotypes. Furthermore, longer haplotypes are more subject to 

recombination, decreasing the accuracy of predicted number of haplotype copies. 

Hayes et al. [6] found that 6-marker haplotypes explained more QTL-variance than 4-

marker haplotypes, but had much lower proportions of QTL-variance explained by the 

markers due to lower marker density and lower LD. Hayes et al. [6]  found that the 

increase in accuracy was much higher with haplotypes than with using a neighbor 

marker in agreement with this study. Calus et al. [22] investigated the use of different 

definitions of haplotypes on the accuracy of genomic selection and found that with a 

high marker density the regression on single SNP worked almost as well as 

haplotypes with two markers. In their study all SNP were used for a single SNP 

regression, whereas in this study only one SNP was used to estimate the QTL-effect. 

This disfavored the neighbor marker method in our study, although the ranking of the 

alternatives is the same as in Calus et al. [22]. In the context of QTL fine-mapping, 

Grapes et al. [23] found that single marker regression with 10 markers performed 

worse than an IBD-method using linkage disequilibrium and linkage analysis 

information with a haplotype window of 10 markers, but single marker regression 

performed similarly when 20 markers were used. Zhao et al. [24] found that the 

power of a model with regression on two or four SNP yielded higher power to detect 
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QTL than 2- or 4-marker haplotypes. This suggests that ranking of methods for QTL 

mapping might be different than for accuracy of marker-assisted or genomic selection 

[25].   

The proportion QTL-variance explained by the haplotypes or the neighbor marker 

( 2r ) was higher than in Hayes et al. [6]. At marker distances ranging from 0.1 to 1.0 

cM, estimated 2r  in cattle populations have been found lower (~0.05 – 0.27) than 

those found in this simulation study [6,26,27,28]. However, in pig and poultry 

populations higher 2r  have been estimated (~0.20-0.50 in pigs and poultry) [29,30], 

resembling the observed 2r  in our study. The 2r  between neighbor marker and QTL 

or between pairs of markers followed the expected 2r  based on distance in cM and 

the effective population size [31]. The lower 2r  values found at short distance in 

cattle populations is probably due to much higher effective population sizes in the 

past, because LD at short distances reflects more the past effective population size 

[32]. As a consequence of lower LD at short distances in cattle, a higher SNP density 

than that used in this study is necessary to achieve in cattle the same accuracy of 

QTL-EBV as presented here.   

Haplotypes were assumed to be unrelated in this study and it was assumed that the 

same QTL-allele is linked to a certain haplotype (identity-by-state = IBS). Due to 

recombination, linkage phases between haplotypes and QTL may be different in 

different families. In the context of genomic selection, Calus et al. [22] compared 2-

marker IBS-haplotypes with 2- and 10-marker identity-by-descent haplotypes using 

combined linkage disequilibrium linkage analysis information (LDLA) to construct 

the inverse IBD-matrices. They found that IBD-haplotypes yielded higher accuracies, 

especially when using 10-marker windows, but at the cost of much higher computing 
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time. The difference between IBS and IBD-haplotypes decreased with increasing 

marker density. Therefore, in our study it is unlikely that IBD-haplotypes would 

increase accuracy significantly when the distance between the markers is less than 0.1 

cM. 

A major disadvantage of using haplotypes is the need to phase the data. Hayes et al. 

[6] estimated the effect of haplotyping errors on the proportion of QTL-variance 

explained by the haplotypes in their data set and found a limited effect, but suggested 

that phasing errors are dependent on the data structure used. Accurate and fast 

algorithms are available for use in livestock populations [33,34,28]. Windig and 

Meuwissen [34] have shown that their algorithm is very fast and yields almost perfect 

haplotype reconstruction with dense marker maps in pedigreed populations. Its 

performance was similar to that of SIMWALK2 [35] in terms of accuracy, but with a 

much lower computing time. Furthermore, the presented method can accommodate 

haplotyping errors, e.g. by adjusting the heritability of nhc  to a lower value, albeit at 

the expense of a lower accuracy. 

The major advantage of the method used in this study is its computing efficiency, 

because optimized BLUP software can be used to predict haplotypes. The 

computation time was respectively ~ 4, 6 and 10s for neighboring marker (NM), 2-

marker haplotypes (HAP2) and 4-marker haplotypes (HAP4) to predict the 

genotypes/haplotypes on a dual-processor 64-bit Windows PC with 2.40 GHz and 36 

GB of RAM; programs were compiled for 32-bit. Therefore, breeding companies do 

not need other software for imputing genotypes, which is usually much slower and 

much more memory intensive, prohibiting its use for large populations, e.g. with more 

than a million animals. An additional advantage is that no assumptions are needed on 

where ungenotyped animals should appear in the pedigree, it can handle all possible 
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scenarios. Therefore, the proposed method is very suitable for application of marker-

assisted breeding value estimation in large populations, such as national evaluations in 

cattle.  Also for genomic selection purposes the method is very useful, e.g. for 50,000 

SNP-markers it would take only about two days on a single processor to predict all 

SNP-genotypes or haplotypes for a similar number of animals as in this study.    

The use of 4-marker haplotypes (HAP4) increased the accuracy of marker-assisted 

breeding value estimation substantially in comparison to conventional breeding value 

estimation for genotyped animals, but the benefit for ungenotyped animals was small 

in agreement with Mulder et al. [8]. However, with a low heritability, ungenotyped 

animals gained considerably in accuracy. This can be visualized by approximating the 

accuracy of the total EBV ( totalEBVr ) as: 

  

2222 )1( hpolAtotalEBV rqrqr +−=        (5) 

 

where 2q  is the proportion of genetic variance explained by the haplotypes (= 

22
Qr

qtlA × , where 
qtlAr  is the accuracy of the QTL-EBV and 2Q  is the amount of 

genetic variance explained by the QTL), 
polAr  is the accuracy of the polygenic EBV 

and hr  is the accuracy of the predicted number of haplotype copies. If we take the 

situation where the heritability is 0.03, the distance between markers is 0.1 cM and the 

QTL explains 15% of the genetic variance, 
polAr  is 0.34 (Table 6) and we assume that 

2q  is 0.10 (assuming 
qtlAr = 0.8 (Table 6)), then Equation (5) yields totalEBVr  = 0.374, 
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close to the value in Table 6. Using Equation (5), we can also quantify the benefit of 

genome-wide EBV for ungenotyped animals. Lets assume that we can explain 90% of 

the genetic variance by markers ( 2q = 0.9), then we can increase totalEBVr  up to 0.58 

assuming that 
polAr  is constant. So even for ungenotyped animals genome-wide EBV 

can increase accuracy in comparison to conventional BLUP, especially for low 

heritability traits, when their paternal ancestors are genotyped. 

 

Conclusions  

In this study we show that mixed model equations can be used to predict number of 

haplotype copies for ungenotyped animals and these predicted number of haplotype 

copies can be used in marker-assisted breeding value estimation. Four-marker 

haplotypes give the highest accuracy for total estimated breeding values. The 

accuracy of the total EBV increases for genotyped animals, but for ungenotyped 

animals the increase is marginal unless the heritability is smaller than 0.1. The method 

works best when the distance between the markers is less than 1 cM. The proposed 

method is computationally very efficient and suitable to apply for marker-assisted 

breeding value estimation in large livestock populations including effects of a number 

of known QTL. Marker-assisted breeding value estimation using predicted haplotypes 

increases accuracy especially for traits with low heritability. It is expected that 

genomic selection for ungenotyped animals using predicted haplotypes or marker 

genotypes will be beneficial especially for low heritable traits. 
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Appendix 

Derivation of haplotype variance used in mixed models 

Assuming that the haplotypes explain 100% of the QTL-variance, the variance of 

haplotype effects 2

hσ  used in Equation (4) can be calculated similarly to the variance 

when regressing on one bi-allelic marker/QTL: 
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where α  is the allele substitution effect, p  is the allele frequency of one of the two 

SNP-alleles. Extrapolating the result of Equation (A1) to n  haplotypes yields: 
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where  im  is the frequency of haplotype i . Assuming equal frequencies of all n  

haplotypes yields:  
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The limit of Equation (A3) is: 
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showing that the variance of haplotype i  is half the additive genetic variance of the 

QTL with an infinite number of haplotypes. Although the result in Equation (A2) 

depends on haplotype frequencies and number of haplotypes, preliminary analyses 

showed that using the result of Equation (A4) yields high accuracies of QTL-EBV. 
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Furthermore, these preliminary analyses showed that the accuracy of the QTL-EBV is 

insensitive to 2

hσ .   
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Figures 

Figure 1 – Mean proportion of QTL-variance explained by haplotypes as a 

function of distance between SNP-markers 

Mean proportion of QTL-variance explained by neighboring marker (NM), 2-marker 

haplotype (HAP2) and 4-marker haplotype (HAP4); average of 200 replicates  

 

Figure 2 – Frequency distribution of QTL-variance explained by haplotypes 

Proportion of replicates per 0.1-bin class of proportion of QTL variance (r
2
) explained 

by neighboring marker (NM), 2-marker haplotype (HAP2) and 4-marker haplotype 

(HAP4); average of 200 replicates; sires and males in last generation are genotyped; 

distance between markers is 0.1 cM  

 

Figure 3 - Accuracy of QTL-EBV and total EBV as a function of marker distance 

for genotyped males and ungenotyped females 

Accuracy of QTL-EBV and total EBV for marker-assisted BLUP with neighboring 

marker (NM), 2-marker haplotype (HAP2) and 4-marker haplotype (HAP4), gene-

assisted BLUP (GABLUP) when all animals are genotyped and conventional BLUP 

(CONBLUP); panels A and B: accuracy of QTL-EBV; panels C and D accuracy of 

total EBV; for MABLUP, sires and males in the last generation were genotyped, the 

rest was not genotyped, heritability is 0.30, the QTL explains 15% of the genetic 

variance, results are averages of 200 replicates  
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Figure 4 – Frequency distribution of accuracy of QTL-EBV of genotyped 

animals 

Proportion of replicates per 0.1-bin-class for accuracy of QTL-EBV of genotyped 

animals for neighboring marker (NM), 2-marker haplotype (HAP2) and 4-marker 

haplotype (HAP4); sires and males in last generation are genotyped, distance between 

markers is 0.1 cM, heritability is 0.3, the QTL explains 15% of the genetic variance, 

average of 200 replicates 
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Tables 

Table 1 - Example with four animals with the number of haplotype copies for 

two SNP-marker haplotypes 

   Number of haplotype copies ( nhc ) 

Animal Haplotype 1 Haplotype 2 Hap1 (11) Hap2 (12) Hap3 (21) Hap4 (22) 

1 11 11 2 0 0 0 

2 11 12 1 1 0 0 

3 11 21 1 0 1 0 

4 11 22 1 0 0 1 
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Table 2 – Parameter values for simulation 

Parameter Default value Alternative values 

Number of sires per generation 50  

Number of dams per generation 250  

Total number of animals 10,000  

Number of progeny per dam 8  

Number of generations 5  

Heritability  0.3 0.03 and 0.10 

Proportion of genetic variance 

explained by QTL 

0.15  

Number of markers simulated 
20  

Distance between markers 0.1 cM 0.5, 1.0, 2.0, 5.0 cM 

Number of markers used 10  

Number of replicates 200  
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Table 3 – Summary statistics of predicted number of haplotype copies for 

ungenotyped animals 

Haplotype method True nhc  Mean SD MSE 

NM 0 0.59 0.08 0.54 

 1 0.99 0.09 0.20 

 2 1.43 0.08 0.52 

HAP2 0 0.34 0.06 0.27 

 1 0.76 0.08 0.24 

 2 1.24 0.08 0.75 

HAP4 0 0.16 0.04 0.11 

 1 0.58 0.06 0.32 

 2 1.13 0.08 0.90 

Mean, standard deviation (SD) and mean square error (MSE) of predicted number of 

haplotype copies ( nhc ) for neighboring marker (NM), 2-marker haplotype (HAP2) 

and 4-marker haplotypes (HAP4) for ungenotyped animals in the last generation 

(females) as a function of true nhc  (sires and males in last generation are genotyped;  

distance between markers is 0.1 cM, heritability is 0.30, the QTL explains 15% of the 

genetic variance, results are averages of 200 replicates)  
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Table 4 – Accuracy and regression coefficients of predicted number of 

haplotype copies for ungenotyped animals 

Haplotype method Accuracy nhc  (se) Regression
1
 true nhc  

on predicted nhc  (se) 

NM 0.643 (0.003) 1.005 (0.004) 

HAP2 0.630 (0.007) 0.994 (0.022) 

HAP4 0.595 (0.012) 0.914 (0.038) 

Accuracy of number of haplotype copies ( nhc ) and regression of true nhc  on 

predicted nhc  for neighboring marker (NM), 2-marker haplotype (HAP2) and 4-

marker haplotypes (HAP4) for ungenotyped animals in the last generation (females) 

(sires and males in last generation are genotyped; distance between markers is 0.1 cM, 

heritability is 0.30, the QTL explains 15% of the genetic variance, results are averages 

of 200 replicates)  

1
Regressions where the variance of the predicted nhc  was smaller than 0.0001 were 

omitted (denominator of regression coefficient) 
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Table 5 - Accuracy of EBV for genotyped males and ungenotyped females in 

different genotyping scenarios 

  Genotyped  Ungenotyped 

EBV Scenario
2
 NM HAP2 HAP4  NM HAP2 HAP4 

QTL sires + males last 0.534 0.775 0.912  0.336 0.491 0.580 

 all males genotyped 0.534 0.774 0.926  0.337 0.493 0.591 

 all genotyped 0.534 0.776 0.932     

Polygenic only sires + males last 0.567 0.576 0.583  0.566 0.575 0.582 

 all males genotyped 0.567 0.577 0.584  0.566 0.576 0.583 

 all genotyped 0.567 0.578 0.586     

Total only sires + males last 0.605 0.616 0.622  0.595 0.596 0.596 

 all males genotyped 0.605 0.616 0.624  0.595 0.596 0.596 

 all genotyped 0.606 0.617 0.625     

Accuracies
1
 of QTL-EBV, polygenic EBV and total EBV for different genotyping 

scenarios for marker-assisted BLUP with neighboring marker (NM), 2-marker 

haplotype (HAP2) and 4-marker haplotypes (HAP4) (distance between markers is 0.1 

cM, heritability is 0.30, the QTL explains 15% of the genetic variance, results are 

averages of 200 replicates)   

1
Standard errors were between 0.005 and 0.021 for QTL_EBV, between 0.002 and 

0.003 for polygenic and total EBV; 
2
 in the first scenario sires from generation 101-

104 and males in generation 105 were genotyped (1,200 genotyped animals); in 

scenario 2 all males were genotyped (5,000 genotyped animals) and in the last 

scenario all animals are genotyped (10,000 genotypes) 
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Table 6 – Accuracies of QTL-EBV, polygenic EBV and total EBV for genotyped 

males and ungenotyped females 

   Genotyped  Ungenotyped 

EBV h
2
 CONBLUP NM HAP2 HAP4  NM HAP2 HAP4 

QTL 0.03  0.568 0.723 0.796  0.371 0.475 0.524 

 0.10  0.542 0.770 0.865  0.349 0.493 0.554 

 0.30  0.534 0.775 0.912  0.336 0.491 0.580 

Polygenic 0.03  0.333 0.336 0.336  0.335 0.339 0.339 

 0.10  0.444 0.452 0.456  0.454 0.444 0.452 

 0.30  0.567 0.576 0.583  0.566 0.575 0.582 

Total 0.03 0.351 0.387 0.407 0.418  0.362 0.368 0.371 

 0.10 0.465 0.488 0.508 0.516  0.468 0.471 0.472 

 0.30 0.594 0.605 0.616 0.622  0.595 0.596 0.596 

Accuracies
1
 of QTL-EBV, polygenic EBV and total EBV for different values of 

heritability for marker-assisted BLUP with neighboring marker (NM), 2-marker 

haplotype (HAP2) and 4-marker haplotypes (HAP4) and conventional BLUP 

(CONBLUP) (sires and males in last generation are genotyped; distance between 

markers is 0.1 cM, the QTL explains 15% of the genetic variance, results are averages 

of 200 replicates)  

1
Standard errors were between 0.007 and 0.022 for QTL-EBV, between 0.002 and 

0.006 for polygenic EBV and between 0.002 and 0.005 for total EBV 
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Table 7 – Regression coefficients of estimated breeding values for genotyped 

males and ungenotyped females 

   Genotyped  Ungenotyped 

EBV h
2
 CONBLUP NM HAP2 HAP4  NM HAP2 HAP4 

QTL 0.03  0.867 1.115 1.143  0.797 1.109 1.165 

 0.10  0.772 0.899 0.955  0.809 0.889 0.953 

 0.30  0.869 0.909 0.917  0.744 0.884 0.910 

Polygenic 0.03  0.945 0.962 0.970  0.948 0.965 0.975 

 0.10  0.950 0.973 0.985  0.951 0.973 0.985 

 0.30  0.951 0.966 0.976  0.954 0.965 0.973 

Total 0.03 0.972 0.954 0.991 0.986  0.989 0.997 0.989 

 0.10 0.987 0.981 0.975 0.974  1.022 1.014 1.011 

 0.30 0.966 1.000 0.988 0.979  1.032 1.029 1.026 

Regression
1
 of true on estimated breeding values for QTL-EBV, polygenic EBV and 

total EBV for genotyped males and ungenotyped females for different values of 

heritability for marker-assisted BLUP with neighboring marker (NM), 2-marker 

haplotype (HAP2) and 4-marker haplotypes (HAP4) and conventional BLUP 

(CONBLUP) (sires and males in last generation are genotyped; distance between 

markers is 0.1 cM, the QTL explains 15% of the genetic variance, results are averages 

of 200 replicates)  

1
Standard errors were between 0.015 and 0.060 for QTL_EBV, between 0.004 and 

0.015 for polygenic EBV and between 0.004 and 0.014 for total EBV; regressions 

where the variance of the predicted nhc  was smaller than 0.0001 were omitted 

(denominator of regression coefficient) 
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Table 8 - Bias in estimated breeding values for genotyped males and 

ungenotyped females 

   Genotyped  Ungenotyped 

EBV h
2
 CONBLUP NM HAP2 HAP4  NM HAP2 HAP4 

QTL 0.03  -0.008 -0.007 -0.001  -0.009 -0.007 -0.001 

 0.10  -0.022 -0.013 0.000  -0.023 -0.014 -0.002 

 0.30  -0.057 -0.028 0.008  -0.060 -0.032 0.003 

Polygenic 0.03  0.006 0.002 -0.003  0.006 0.001 -0.003 

 0.10  0.064 0.049 0.035  0.064 0.049 0.035 

 0.30  0.125 0.086 0.053  0.126 0.087 0.055 

Total 0.03 0.007 -0.002 -0.005 -0.004  -0.003 -0.006 -0.005 

 0.10 0.042 0.041 0.035 0.034  0.041 0.035 0.034 

 0.30 0.036 0.068 0.058 0.061  0.067 0.055 0.058 

Bias
1
 (estimated – true breeding value) in QTL-EBV, polygenic EBV and total EBV 

for genotyped males and ungenotyped females for different values of heritability for 

marker-assisted BLUP with neighboring marker (NM), 2-marker haplotype (HAP2) 

and 4-marker haplotypes (HAP4) and conventional BLUP (CONBLUP) (sires and 

males in last generation are genotyped; distance between markers is 0.1 cM, the QTL 

explains 15% of the genetic variance, results are averages of 200 replicates)  

1
Standard errors were between 0.003 and 0.012 for h

2
=0.03, between 0.005 and 0.025 

for h
2
=0.10 and between 0.009 and 0.037 for h

2
=0.30  
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