457 research outputs found
Hydrodynamic lift of vesicles under shear flow in microgravity
The dynamics of a vesicle suspension in a shear flow between parallel plates
has been investigated under microgravity conditions, where vesicles are only
submitted to hydrodynamic effects such as lift forces due to the presence of
walls and drag forces. The temporal evolution of the spatial distribution of
the vesicles has been recorded thanks to digital holographic microscopy, during
parabolic flights and under normal gravity conditions. The collected data
demonstrates that vesicles are pushed away from the walls with a lift velocity
proportional to where is the shear rate,
the vesicle radius and its distance from the wall. This scaling as well
as the dependence of the lift velocity upon vesicle aspect ratio are consistent
with theoretical predictions by Olla [J. Phys. II France {\bf 7}, 1533--1540
(1997)].Comment: 6 pages, 8 figure
A stochastic movement simulator improves estimates of landscape connectivity
Acknowledgments This publication issued from the project TenLamas funded by the French MinistĂšre de l'Energie, de l'Ecologie, du DĂ©veloppement Durable et de la Mer through the EU FP6 BiodivERsA Eranet; by the Agence Nationale de la Recherche (ANR) through the open call INDHET and 6th extinction MOBIGEN to V. M. Stevens, M. Baguette, and A. Coulon, and young researcher GEMS (ANR-13-JSV7-0010-01) to V. M. Stevens and M. Baguette; and by a VLIR-VLADOC scholarship awarded to J. Aben. L. Lens, J. Aben, D. Strubbe, and E. Matthysen are grateful to the Research Foundation Flanders (FWO) for financial support of fieldwork and genetic analysis (grant G.0308.13). V. M. Stevens and M. Baguette are members of the âLaboratoire d'Excellenceâ (LABEX) entitled TULIP (ANR-10-LABX-41). J. M. J. Travis and S. C. F. Palmer also acknowledge the support of NERC. A. Coulon and J. Aben contributed equally to the work.Peer reviewedPublisher PD
Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia
Ice rises situated in the ice-shelf belt around Antarctica have a spatially confined flow regime with local ice divides. Beneath the divides, ice stratigraphy often develops arches with amplitudes that record the divide's horizontal residence time andsurface elevation changes. To investigate the evolution of Derwael Ice Rise, Dronning Maud Land, Antarctica, we combine radar and GPS data from three consecutive surveys, with a two-dimensional, full Stokes, thermomechanically-coupled, transient ice-flow model. We find that the surface mass balance (SMB) is higher on the upwind and lower on the downwind slopes. Near the crest, the SMB is anomalously low and causes arches to form in the shallow stratigraphy, observable by radar. In deeper ice, arches are consequently imprinted by both SMB and ice rheology (Raymond effect). The data show how arch amplitudes decrease as along-ridge slope increases, emphasizing that the lateral positioning of radar cross-sections is important for the arch interpretation. Using the model with three rheologies (isotropic with n = 3,4.5 and anisotropic with n = 3), we show that Derwael Ice Rise is close to steady-state, but is best explained using ice anisotropy and moderate thinning. Our preferred, albeit notunique, scenario suggests that the ice divide has existed for at least 5000 years and lowered at approximately 0.03 m aâ1 over the last 3400 years. Independent of the specific thinning scenario, our modeling suggests that Derwael Ice Rise has exhibited a local flow regime at least since the Mid-Holocene
Micro-Capsules in Shear Flow
This paper deals with flow-induced shape transitions of elastic capsules. The
state of the art concerning both theory and experiments is briefly reviewed
starting with dynamically induced small deformation of initially spherical
capsules and the formation of wrinkles on polymerized membranes. Initially
non-spherical capsules show tumbling and tank-treading motion in shear flow.
Theoretical descriptions of the transition between these two types of motion
assuming a fixed shape are at variance with the full capsule dynamics obtained
numerically. To resolve the discrepancy, we expand the exact equations of
motion for small deformations and find that shape changes play a dominant role.
We classify the dynamical phase transitions and obtain numerical and analytical
results for the phase boundaries as a function of viscosity contrast, shear and
elongational flow rate. We conclude with perspectives on timedependent flow, on
shear-induced unbinding from surfaces, on the role of thermal fluctuations, and
on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure
Challenge of teaching complex, end-to-end space system design and development process: Earth Observation Satellite System Design training course
The Earth Observation Satellite System Design training course was first offered in 2018 at ESA Academyâs Training and Learning Facility at ESAâs ESEC Galaxia site in Belgium, and again in 2021 in an online format under the Covid-19 pandemic situation. The course covers the end-to-end design and development process of satellite Earth observation systems. Two major challenges were faced by the teaching experts, consisting of the active and retired ESA staff, as well as ESA Academyâs instructional designers for its development: (1) Condensing such a vast subject domain, associated with a complex, multi-disciplinary engineering undertaking, into a compact format (e.g. 4.5 days in 2018) without sacrificing the quality of the essential technical knowledge, engineering practices and logic as taught; (2) Presenting the course materials in a comprehensive form to a group of 30 M.S. and Ph.D. students with their backgrounds generally not covering all of the technical disciplines associated with the course subject domain. The 2021 online edition of the training course, which drew on lessons learnt from 2018, consisted of 18 lectures, plus 5 group project sessions where the students put their acquired knowledge into practice and learned to work in a project team environment. This paper concentrates on the approach and logic adopted by the instructional team to address the above 2 challenges. Difficulties encountered in some of the areas, e.g. remote sensing instrumentation designs, are discusse
Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals
An increasing variety of indicators of antimicrobial usage has become available in human and veterinary medicine, with no consensus on the most appropriate indicators to be used. The objective of this review is therefore to provide guidance on the selection of indicators, intended for those aiming to quantify antimicrobial usage based on sales, deliveries or reimbursement data. Depending on the study objective, different requirements apply to antimicrobial usage quantification in terms of resolution, comprehensiveness, stability over time, ability to assess exposure and comparability. If the aim is to monitor antimicrobial usage trends, it is crucial to use a robust quantification system that allows stability over time in terms of required data and provided output; to compare usage between different species or countries, comparability must be ensured between the different populations. If data are used for benchmarking, the system comprehensiveness is particularly crucial, while data collected to study the association between usage and resistance should express the exposure level and duration as a measurement of the exerted selection pressure. Antimicrobial usage is generally described as the number of technical units consumed normalized by the population at risk of being treated in a defined period. The technical units vary from number of packages to number of individuals treated daily by adding different levels of complexity such as daily dose or weight at treatment. These technical units are then related to a description of the population at risk, based either on biomass or number of individuals. Conventions and assumptions are needed for all of these calculation steps. However, there is a clear lack of standardization, resulting in poor transparency and comparability. By combining study requirements with available approaches to quantify antimicrobial usage, we provide suggestions on the most appropriate indicators and data sources to be used for a given study objective
Quantum Fluctuation Relations for the Lindblad Master Equation
An open quantum system interacting with its environment can be modeled under
suitable assumptions as a Markov process, described by a Lindblad master
equation. In this work, we derive a general set of fluctuation relations for
systems governed by a Lindblad equation. These identities provide quantum
versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response
regime, these fluctuation relations yield a fluctuation-dissipation theorem
(FDT) valid for a stationary state arbitrarily far from equilibrium. For a
closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula
- âŠ