428 research outputs found

    Headache and alexithymia in children and adolescents: what Is the connection?

    Get PDF
    Background: Headache is one of the most common complaints in children and adolescents and comorbidity rates are very high and the major associated diseases are depression, anxiety, atopic disorders, sleep, and behavioral disorders. In recent years, it has been highlighted that difficulties regulating emotions such as alexithymia have also been associated with diagnosis of somatization. Methods: We carried out a mini review analyzing the relation between alexithymia and primary headache (e.g., migraine and tension type headache) in children and adolescents by synthesizing the relevant studies in the literature on PubMed, PsycINFO, and Google Scholar. Search terms were "alexithymia" combined with the "primary headache," "migraine," "tension type headache," "children," and "adolescents." Results: All analyzed studies found higher levels of alexithymia in children and adolescents with headache than control groups but there are different opinions about the relationship between headache and alexithymia. For example, some studies suggest that the association between headache and alexithymia in children may be due to an incomplete development of emotive competency or a general immature cognitive development, instead other studies found a correlation between headache symptoms, insecure attachment, and alexithymia. There seems to be also differences between children with migraine compared to those with tension type headache (TTH). Conclusion: There are some studies on adults suffering from headache or migraine and alexithymia, but there is only a moderate amount of research on pediatric age with different opinions and theories about this relationship. Further studies on children and adolescents are necessary to effectively understand this relationship and to help children to reduce headache and improve emotional consciousness

    Metacognition and headache: which Is the role in childhood and adolescence?

    Get PDF
    Headache, in particular migraine, is one of the most frequent neurological symptoms in children and adolescents and it affects about 60% of children and adolescents all over the world. Headache can affect several areas of child’s functioning, such as school, physical activities, peer, and family relationship. The global and severe burden of this disease requires a multidisciplinary strategy and an effective treatment addressed all of the patient’s needs and based on cutting-edge scientific research. In recent years, research has focused on cognitive factors specifically in functions called metacognitive processes. Metacognition can be defined as the knowledge, beliefs, and cognitive processes involved in monitoring, control, and assessment of cognition. Metacognition seems to be closely related to the ability of theory of mind, the ability to infer, and reason about the mental states of other people in order to predict and explain own behavior. Recent studies found a relationship between metacognitive skills and anxiety, depression, motivation, academic performance, human social interactions, and stress symptoms. This relationship is very interesting for headache treatment, because these factors are the most commonly reported triggers in this disorder and there is a high comorbidity with anxiety and depression in children and adolescents with headache. So, headache and these comorbidities, in particular anxiety and depression, may have in common persistent and maladaptive patterns of thinking which are related to maladaptive metacognitive beliefs. Further research should assess metacognitive processes of children and adolescents with headache in order to increase their ability to control their own cognitive processes and consequently monitor factors which may trigger the attacks

    Fault-trapped waves depict continuity of the fault system responsible for the 6 April 2009 MW 6.3 L’Aquila earthquake, central Italy

    Get PDF
    We investigate fault-trapped waves observed at a permanent broad-band station (FAGN) installed on the San Demetrio Fault, about 20 km southeast of L'Aquila. This fault has the same strike of the Paganica Fault which was responsible for the MW 6.3, 6 April 2009 earthquake. The two faults display an en-echelon pattern with a few km offset. We have found that events causing efficient trapped waves are clustered at the northwestern and southeastern bottom ends of the ruptured Paganica fault plane. The efficiency of trapped waves at FAGN, which is located about 5 km far from the ruptured fault plane, indicates that the two faults are linked at depth. This suggests that fault segments in the study area can be part of a longer and continuous fault system which controls the seismic hazard of the region. Moreover, we have found that the two earthquake clusters generating the most efficient trapped waves occur in portions of the fault system with the highest fluid pressure

    Lower energy and pulse stacking. a safer alternative for skin tightening using fractional co2 laser

    Get PDF
    To evaluate the effect of different energies and stacking in skin shrinkage. Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically evaluated for microthermal zones dimensions. Groups II and III (n=10 each) were macroscopic evaluated with freeware ImageJ for area contraction immediately and after 30 and 60 days. No statistical significance was found within microthermal zone histological dimensions (Group I) in all settings studied. (Ablation depth: 76.90 to 97.18µm; Coagulation depth: 186.01 to 219.84 µm). In Group II, macroscopic evaluation showed that all settings cause significant immediate skin contraction. The highest setting cause significant more intense tightening effect initially, contracting skin area from 258.65 to 179.09 mm2. The same pattern was observed in Group III. At 30 and 60 days, the lowest setting significantly sustained contraction. Lower fractional CO2 laser energies associated to pulse stacking could cause consistent and long lasting tissue contraction in rats.To evaluate the effect of different energies and stacking in skin shrinkage. Methods: Three decreasing settings of a fractional CO2 laser were applied to the abdomen of Twenty five Wistar rats divided into three groups. Group I (n=5) was histologically ev3112835sem informaçãosem informaçã

    Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning

    Get PDF
    No univocal and reliable brain-based biomarkers have been detected to date in Autism Spectrum Disorders (ASD). Neuroimaging studies have consistently revealed alterations in brain structure and function of individuals with ASD; however, it remains difficult to ascertain the extent and localization of affected brain networks. In this context, the application of Machine Learning (ML) classification methods to neuroimaging data has the potential to contribute to a better distinction between subjects with ASD and typical development controls (TD). This study is focused on the analysis of resting-state fMRI data of individuals with ASD and matched TD, available within the ABIDE collection. To reduce the multiple sources of heterogeneity that impact on understanding the neural underpinnings of autistic condition, we selected a subgroup of 190 subjects (102 with ASD and 88 TD) according to the following criteria: male children (age range: 6.5–13 years); rs-fMRI data acquired with open eyes; data from the University sites that provided the largest number of scans (KKI, NYU, UCLA, UM). Connectivity values were evaluated as the linear correlation between pairs of time series of brain areas; then, a Linear kernel Support Vector Machine (L-SVM) classification, with an inter-site cross-validation scheme, was carried out. A permutation test was conducted to identify over-connectivity and under-connectivity alterations in the ASD group. The mean L-SVM classification performance, in terms of the area under the ROC curve (AUC), was 0.75 ± 0.05. The highest performance was obtained using data from KKI, NYU and UCLA sites in training and data from UM as testing set (AUC = 0.83). Specifically, stronger functional connectivity (FC) in ASD with respect to TD involve (p < 0.001) the angular gyrus with the precuneus in the right (R) hemisphere, and the R frontal operculum cortex with the pars opercularis of the left (L) inferior frontal gyrus. Weaker connections in ASD group with respect to TD are the intra-hemispheric R temporal fusiform cortex with the R hippocampus, and the L supramarginal gyrus with L planum polare. The results indicate that both under-and over-FC occurred in a selected cohort of ASD children relative to TD controls, and that these functional alterations are spread in different brain networks

    The magnitude of damaging volcanic earthquakes of Mt. Etna: are the commonly used scales adequate?

    Get PDF
    On October 2002 a seismic swarm occurred on the eastern flank of Mt. Etna. One of the strongest events caused severe damage, up to EMS intensity of VIII that contrasts with its local magnitude of 4.4. The occurrence of significant damage at such small magnitude is repeatedly observed in the Mt. Etna area and is traditionally attributed to the shallow source of volcanic earthquakes. Strong-motion accelerograms and broad-band seismograms recorded during the swarm demonstrate that there is a more cogent cause for the severe damage, i.e. an anomalously strong low-frequency (0.1 < f < 1 Hz) radiation deviating from the conventional Brune (1970) spectral scaling. Therefore, these earthquakes cause unexpectedly large ground displacements and long ( 20 sec) durations of shaking. The integration of digital accelerograms recorded on October 2002 yields a maximum peak ground displacement as large as 1.8 cm at a distances of 18 km, out of the largest damage zone. Based on the sharp local attenuation of ground motion amplitudes observed during the Mt. Etna earthquakes, we infer that displacements near the epicentres can have attained 10 cm. So large displacements are consistent with the maximum observed damage. Moreover, the frequency cutoff below 1.25 Hz in the Wood-Anderson response attenuates the peak-to-peak amplitudes used to assess local magnitudes. This instrumental deamplification at low frequency yields underestimated values of local magnitude that are not representative of the real ground shaking. Since a prompt, correct magnitude (and potential damage) assessment is crucial for efficient Civil Protection actions, a procedure is proposed which, in near-real-time, can be successful in identifying potentially damaging earthquakes of Mt. Etna through the computation of response spectra. The procedure provides a magnitude value that is derived on a statistical basis from the Housner (1952) spectral intensity computed in the low-frequency band. This parameter is a suitable near-real-time indicator of large earthquake-induced building shaking and could also be applied for a preliminary determination of the epicentral macroseismic intensity of volcanic events of Mt. Etna through consolidated relationships established for tectonic earthquakes in Italy
    corecore