65 research outputs found

    The superconducting phase transition and gauge dependence

    Full text link
    The gauge dependence of the renormalization group functions of the Ginzburg-Landau model is investigated. The analysis is done by means of the Ward-Takahashi identities. After defining the local superconducting order parameter, it is shown that its exponent β\beta is in fact gauge independent. This happens because in d=3d=3 the Landau gauge is the only gauge having a physical meaning, a property not shared by the four-dimensional model where any gauge choice is possible. The analysis is done in both the context of the ϵ\epsilon-expansion and in the fixed dimension approach. It is pointed out the differences that arise in both of these approaches concerning the gauge dependence.Comment: RevTex, 3 pages, no figures; accepted for publication in PRB; this paper is a short version of cond-mat/990527

    Multiplicative processes and power laws

    Full text link
    [Takayasu et al., Phys. Rev.Lett. 79, 966 (1997)] revisited the question of stochastic processes with multiplicative noise, which have been studied in several different contexts over the past decades. We focus on the regime, found for a generic set of control parameters, in which stochastic processes with multiplicative noise produce intermittency of a special kind, characterized by a power law probability density distribution. We briefly explain the physical mechanism leading to a power law pdf and provide a list of references for these results dating back from a quarter of century. We explain how the formulation in terms of the characteristic function developed by Takayasu et al. can be extended to exponents μ>2\mu >2, which explains the ``reason of the lucky coincidence''. The multidimensional generalization of (\ref{eq1}) and the available results are briefly summarized. The discovery of stretched exponential tails in the presence of the cut-off introduced in \cite{Taka} is explained theoretically. We end by briefly listing applications.Comment: Extended version (7 pages). Phys. Rev. E (to appear April 1998

    Improved radiative corrections for (e,e'p) experiments: Beyond the peaking approximation and implications of the soft-photon approximation

    Full text link
    Analysing (e,e'p) experimental data involves corrections for radiative effects which change the interaction kinematics and which have to be carefully considered in order to obtain the desired accuracy. Missing momentum and energy due to bremsstrahlung have so far always been calculated using the peaking approximation which assumes that all bremsstrahlung is emitted in the direction of the radiating particle. In this article we introduce a full angular Monte Carlo simulation method which overcomes this approximation. The angular distribution of the bremsstrahlung photons is reconstructed from H(e,e'p) data. Its width is found to be underestimated by the peaking approximation and described much better by the approach developed in this work.Comment: 11 pages, 13 figure

    Random wetting transition on the Cayley tree : a disordered first-order transition with two correlation length exponents

    Full text link
    We consider the random wetting transition on the Cayley tree, i.e. the problem of a directed polymer on the Cayley tree in the presence of random energies along the left-most bonds. In the pure case, there exists a first-order transition between a localized phase and a delocalized phase, with a correlation length exponent νpure=1\nu_{pure}=1. In the disordered case, we find that the transition remains first-order, but that there exists two diverging length scales in the critical region : the typical correlation length diverges with the exponent νtyp=1\nu_{typ}=1, whereas the averaged correlation length diverges with the bigger exponent νav=2\nu_{av}=2 and governs the finite-size scaling properties. We describe the relations with previously studied models that are governed by the same "Infinite Disorder Fixed Point". For the present model, where the order parameter is the contact density θL=la/L\theta_L=l_a/L (defined as the ratio of the number lal_a of contacts over the total length LL), the notion of "infinite disorder fixed point" means that the thermal fluctuations of θL\theta_L within a given sample, become negligeable at large scale with respect to sample-to-sample fluctuations. We characterize the statistics over the samples of the free-energy and of the contact density. In particular, exactly at criticality, we obtain that the contact density is not self-averaging but remains distributed over the samples in the thermodynamic limit, with the distribution PTc(θ)=1/(πθ(1−θ)){\cal P}_{T_c}(\theta) = 1/(\pi \sqrt{\theta (1-\theta)}).Comment: 15 pages, 1 figur

    A record-driven growth process

    Full text link
    We introduce a novel stochastic growth process, the record-driven growth process, which originates from the analysis of a class of growing networks in a universal limiting regime. Nodes are added one by one to a network, each node possessing a quality. The new incoming node connects to the preexisting node with best quality, that is, with record value for the quality. The emergent structure is that of a growing network, where groups are formed around record nodes (nodes endowed with the best intrinsic qualities). Special emphasis is put on the statistics of leaders (nodes whose degrees are the largest). The asymptotic probability for a node to be a leader is equal to the Golomb-Dickman constant omega=0.624329... which arises in problems of combinatorical nature. This outcome solves the problem of the determination of the record breaking rate for the sequence of correlated inter-record intervals. The process exhibits temporal self-similarity in the late-time regime. Connections with the statistics of the cycles of random permutations, the statistical properties of randomly broken intervals, and the Kesten variable are given.Comment: 30 pages,5 figures. Minor update

    From Rational Bubbles to Crashes

    Full text link
    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. First, bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent mu<1. We then extend the RE bubble model to arbitrary dimensions d and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions follow power laws, with the same asymptotic tail exponent mu<1 for all assets. Two extensions (the crash hazard rate model and the non-stationary growth rate model) of the RE bubble model provide ways of reconciliation with the stylized facts of financial data. The later model allows for an understanding of the breakdown of the fundamental valuation formula as deeply associated with a spontaneous breaking of the price symmetry. Its implementation for multi-dimensional bubbles explains why the tail index mu seems to be the same for any group af assets as observed empirically. This work begs for the introduction of a generalized field theory which would be able to capture the spontaneous breaking of symmetry, recover the fundamental valuation formula in the normal economic case and extend it to the still unexplored regime where the economic growth rate is larger than the discount growth rate.Comment: Latex 27 pages with 3 eps figur

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include

    Even-visiting random walks: exact and asymptotic results in one dimension

    Full text link
    We reconsider the problem of even-visiting random walks in one dimension. This problem is mapped onto a non-Hermitian Anderson model with binary disorder. We develop very efficient numerical tools to enumerate and characterize even-visiting walks. The number of closed walks is obtained as an exact integer up to 1828 steps, i.e., some 1053510^{535} walks. On the analytical side, the concepts and techniques of one-dimensional disordered systems allow to obtain explicit asymptotic estimates for the number of closed walks of 4k4k steps up to an absolute prefactor of order unity, which is determined numerically. All the cumulants of the maximum height reached by such walks are shown to grow as k1/3k^{1/3}, with exactly known prefactors. These results illustrate the tight relationship between even-visiting walks, trapping models, and the Lifshitz tails of disordered electron or phonon spectra.Comment: 24 pages, 4 figures. To appear in J. Phys.

    Critical properties of the topological Ginzburg-Landau model

    Full text link
    We consider a Ginzburg-Landau model for superconductivity with a Chern-Simons term added. The flow diagram contains two charged fixed points corresponding to the tricritical and infrared stable fixed points. The topological coupling controls the fixed point structure and eventually the region of first order transitions disappears. We compute the critical exponents as a function of the topological coupling. We obtain that the value of the ν\nu exponent does not vary very much from the XY value, νXY=0.67\nu_{XY}=0.67. This shows that the Chern-Simons term does not affect considerably the XY scaling of superconductors. We discuss briefly the possible phenomenological applications of this model.Comment: RevTex, 7 pages, 8 figure

    Phase Structure of d=2+1 Compact Lattice Gauge Theories and the Transition from Mott Insulator to Fractionalized Insulator

    Full text link
    Large-scale Monte Carlo simulations are employed to study phase transitions in the three-dimensional compact abelian Higgs model in adjoint representations of the matter field, labelled by an integer q, for q=2,3,4,5. We also study various limiting cases of the model, such as the ZqZ_q lattice gauge theory, dual to the 3DZq3DZ_q spin model, and the 3DXY spin model which is dual to the ZqZ_q lattice gauge theory in the limit q→∞q \to \infty. We have computed the first, second, and third moments of the action to locate the phase transition of the model in the parameter space (β,κ)(\beta,\kappa), where β\beta is the coupling constant of the matter term, and κ\kappa is the coupling constant of the gauge term. We have found that for q=3, the three-dimensional compact abelian Higgs model has a phase-transition line βc(κ)\beta_{\rm{c}}(\kappa) which is first order for κ\kappa below a finite {\it tricritical} value κtri\kappa_{\rm{tri}}, and second order above. We have found that the β=∞\beta=\infty first order phase transition persists for finite β\beta and joins the second order phase transition at a tricritical point (βtri,κtri)=(1.23±0.03,1.73±0.03)(\beta_{\rm{tri}}, \kappa_{\rm{tri}}) = (1.23 \pm 0.03, 1.73 \pm 0.03). For all other integer q≥2q \geq 2 we have considered, the entire phase transition line βc(κ)\beta_c(\kappa) is critical.Comment: 17 pages, 12 figures (new Fig. 2), new Section IVB, updated references, submitted to Physical Review
    • …
    corecore