210 research outputs found

    Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA), updates in 2022-2023. Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease:Opportunities for therapy

    Get PDF
    This editorial summarizes advances from the Clearance of Interstitial Fluid and Cerebrospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1) understand the age-related physiology changes that underlie impaired clearance of interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the brain; (3) establish novel diagnostic tests for Alzheimer's disease (AD), cerebral amyloid angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormalities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid β (Aβ) from the aging brain and retina, to prevent or reduce AD and CAA pathology and ARIA side events associated with AD immunotherapy

    Comparative analysis of carboxysome shell proteins

    Get PDF
    Carboxysomes are metabolic modules for CO2 fixation that are found in all cyanobacteria and some chemoautotrophic bacteria. They comprise a semi-permeable proteinaceous shell that encapsulates ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. Structural studies are revealing the integral role of the shell protein paralogs to carboxysome form and function. The shell proteins are composed of two domain classes: those with the bacterial microcompartment (BMC; Pfam00936) domain, which oligomerize to form (pseudo)hexamers, and those with the CcmL/EutN (Pfam03319) domain which form pentamers in carboxysomes. These two shell protein types are proposed to be the basis for the carboxysome’s icosahedral geometry. The shell proteins are also thought to allow the flux of metabolites across the shell through the presence of the small pore formed by their hexameric/pentameric symmetry axes. In this review, we describe bioinformatic and structural analyses that highlight the important primary, tertiary, and quaternary structural features of these conserved shell subunits. In the future, further understanding of these molecular building blocks may provide the basis for enhancing CO2 fixation in other organisms or creating novel biological nanostructures

    Dynamic Activation and Repression of the Plasmodium falciparum rif Gene Family and Their Relation to Chromatin Modification

    Get PDF
    The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the “poised” mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes

    Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies

    Get PDF
    Although numerous mouse models of B-cell malignancy have been developed via the enforced expression of defined oncogenic lesions, the feasibility of generating lineage-defined human B-cell malignancies using mice reconstituted with modified human hematopoietic stem cells (HSCs) remains unclear. In fact, whether human cells can be transformed as readily as murine cells by simple oncogene combinations is a subject of considerable debate. Here, we describe the development of humanized mouse model of MYC/BCL2-driven ‘double-hit’ lymphoma. By engrafting human HSCs transduced with the oncogene combination into immunodeficient mice, we generate a fatal B malignancy with complete penetrance. This humanized-MYC/BCL2-model (hMB) accurately recapitulates the histopathological and clinical aspects of steroid-, chemotherapy- and rituximab-resistant human ‘double-hit’ lymphomas that involve the MYC and BCL2 loci. Notably, this model can serve as a platform for the evaluation of antibody-based therapeutics. As a proof of principle, we used this model to show that the anti-CD52 antibody alemtuzumab effectively eliminates lymphoma cells from the spleen, liver and peripheral blood, but not from the brain. The hMB humanized mouse model underscores the synergy of MYC and BCL2 in ‘double-hit’ lymphomas in human patients. Additionally, our findings highlight the utility of humanized mouse models in interrogating therapeutic approaches, particularly human-specific monoclonal antibodies.Kathy and Curt Marble Cancer Research FundSingapore-MIT Alliance for Research and TechnologyNational Institutes of Health (U.S.) (Grant R01-CA128803)Virginia and Daniel K. Ludwig Graduate FellowshipNational Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program Grant T32GM007753)MIT School of Science (Cancer Research Fellowship

    Introduction of a new model for time-continuous and non-contact investigations of in-vitro thrombolysis under physiological flow conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombolysis is a dynamic and time-dependent process influenced by the haemodynamic conditions. Currently there is no model that allows for time-continuous, non-contact measurements under physiological flow conditions. The aim of this work was to introduce such a model.</p> <p>Methods</p> <p>The model is based on a computer-controlled pump providing variable constant or pulsatile flows in a tube system filled with blood substitute. Clots can be fixed in a custom-built clot carrier within the tube system. The pressure decline at the clot carrier is measured as a novel way to measure lysis of the clot. With different experiments the hydrodynamic properties and reliability of the model were analyzed. Finally, the lysis rate of clots generated from human platelet rich plasma (PRP) was measured during a one hour combined application of diagnostic ultrasound (2 MHz, 0.179 W/cm<sup>2</sup>) and a thrombolytic agent (rt-PA) as it is commonly used for clinical sonothrombolysis treatments.</p> <p>Results</p> <p>All hydrodynamic parameters can be adjusted and measured with high accuracy. First experiments with sonothrombolysis demonstrated the feasibility of the model despite low lysis rates.</p> <p>Conclusions</p> <p>The model allows to adjust accurately all hydrodynamic parameters affecting thrombolysis under physiological flow conditions and for non-contact, time-continuous measurements. Low lysis rates of first sonothrombolysis experiments are primarily attributable to the high stability of the used PRP-clots.</p

    Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo

    Get PDF
    Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12

    Nck adapter proteins: functional versatility in T cells

    Get PDF
    Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation

    Auditory Deficit as a Consequence Rather than Endophenotype of Specific Language Impairment: Electrophysiological Evidence

    Get PDF
    Are developmental language disorders caused by poor auditory discrimination? This is a popular theory, but behavioural evidence has been inconclusive. Here we studied children with specific language impairment, measuring the brain's electrophysiological response to sounds in a passive paradigm. We focused on the T-complex, an event-related peak that has different origins and developmental course from the well-known vertex response.We analysed auditory event-related potentials to tones and syllables from 16 children and 16 adolescents with specific language impairment who were compared with 32 typically-developing controls, matched for gender, IQ and age.We replicated prior findings of significant reduction in Ta amplitude for both children and adolescents with specific language impairment, which was particularly marked for syllables. The topography of the T-complex to syllables indicated a less focal response in those with language impairments. To distinguish causal models, we considered correlations between size of the Ta response and measures of language and literacy in parents as well as children. The best-fitting model was one in which auditory deficit was a consequence rather than a cause of difficulties in phonological processing.The T-complex to syllables has abnormal size and topography in children with specific language impairment, but this is more likely to be a consequence rather than a cause of difficulties in phonological processing

    Brain-derived proteins in the CSF, do they correlate with brain pathology in CJD?

    Get PDF
    BACKGROUND: Brain derived proteins such as 14-3-3, neuron-specific enolase (NSE), S 100b, tau, phosphorylated tau and Aβ(1–42 )were found to be altered in the cerebrospinal fluid (CSF) in Creutzfeldt-Jakob disease (CJD) patients. The pathogenic mechanisms leading to these abnormalities are not known, but a relation to rapid neuronal damage is assumed. No systematic analysis on brain-derived proteins in the CSF and neuropathological lesion profiles has been performed. METHODS: CSF protein levels of brain-derived proteins and the degree of spongiform changes, neuronal loss and gliosis in various brain areas were analyzed in 57 CJD patients. RESULTS: We observed three different patterns of CSF alteration associated with the degree of cortical and subcortical changes. NSE levels increased with lesion severity of subcortical areas. Tau and 14-3-3 levels increased with minor pathological changes, a negative correlation was observed with severity of cortical lesions. Levels of the physiological form of the prion protein (PrP(c)) and Aβ(1–42 )levels correlated negatively with cortical pathology, most clearly with temporal and occipital lesions. CONCLUSION: Our results indicate that the alteration of levels of brain-derived proteins in the CSF does not only reflect the degree of neuronal damage, but it is also modified by the localization on the brain pathology. Brain specific lesion patterns have to be considered when analyzing CSF neuronal proteins
    corecore