114 research outputs found

    Timed sequential chemotherapy with concomitant Granulocyte Colony-Stimulating Factor for high-risk acute myelogenous leukemia: a single arm clinical trial

    Get PDF
    BACKGROUND: The timed-sequential chemotherapy regimen consisting of etoposide, mitoxantrone and cytarabine (EMA) is an effective therapy for relapsed or refractory acute myelogenous leukemia (AML). We postulated that granulocyte colony-stimulating factor (G-CSF) might enhance the cytotoxicity of EMA by increasing the proportion of leukemic blasts in S-phase. We added G-CSF to EMA (EMA-G) for therapy of advanced high-risk AML patients. METHODS: High-risk AML was defined as refractory, relapsed or secondary to either an antecedent hematologic disorder or exposure to cytotoxic agents. The patients were treated with one course of EMA-G consisting of mitoxantrone and cytarabine on days 1–3, and etoposide and cytarabine on days 8–10. G-CSF was started on day 4 and continued until absolute neutrophil count recovered. RESULTS: Thirty patients were enrolled. The median age was 51 years (range, 25–75). Seventeen (61%) patients had unfavorable cytogenetic karyotypes. Twenty (69%) patients had secondary AML. Ten (34%) had relapsed disease. Four (14%) had refractory AML. Three (10%) patients died from febrile neutropenia and sepsis. Major non-hematologic toxicity included hyperbilirubimenia, renal insufficiency, mucositis, diarrhea, nausea and vomiting, skin rash. A complete remission was achieved in 13 (46%) patients. Median overall survival was 9 months (range, 0.5–66). Median relapse-free survival (RFS) for those who had a CR was 3 months (range, 0.5–63) with RFS censored at the time of allogeneic bone marrow transplantation or peripheral stem cell transplantation for 6 of the patients. CONCLUSIONS: EMA-G is a safe and efficacious option for induction chemotherapy in advanced, high-risk AML patients. The activity of EMA may be increased if applied in patients with less advanced disease

    Microsporidia::Why Make Nucleotides if You Can Steal Them?

    Get PDF
    Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions

    Collagen I but not Matrigel matrices provide an MMP-dependent barrier to ovarian cancer cell penetration

    Get PDF
    Abstract Background The invasive potential of cancer cells is usually assessed in vitro using Matrigel as a surrogate basement membrane. Yet cancer cell interaction with collagen I matrices is critical, particularly for the peritoneal metastatic route undertaken by several cancer types including ovarian. Matrix metalloprotease (MMP) activity is important to enable cells to overcome the barrier constraints imposed by basement membranes and stromal matrices in vivo. Our objective was to compare matrices reconstituted from collagen I and Matrigel as representative barriers for ovarian cancer cell invasion. Methods The requirement of MMP activity for ovarian cancer cell penetration of Matrigel and collagen matrices was assessed in 2D transwell and 3D spheroid culture systems. Results The broad range MMP inhibitor GM6001 completely prevented cell perforation of polymerised collagen I-coated transwell membranes. In contrast, GM6001 decreased ES-2 cell penetration of Matrigel by only ~30% and had no effect on HEY cell Matrigel penetration. In 3D culture, ovarian cancer cells grown as spheroids also migrated into surrounding Matrigel matrices despite MMP blockade. In contrast, MMP activity was required for invasion into 3D matrices of collagen I reconstituted from acid-soluble rat-tail collagen I, but not from pepsin-extracted collagen I (Vitrogen/Purecol), which lacks telopeptide regions. Conclusion Matrigel does not form representative barriers to ovarian cancer cells in either 2D or 3D culture systems. Our findings support the use of collagen I rather than Matrigel as a matrix barrier for invasion studies to better approximate critical interactions and events associated with peritoneal metastasis

    Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach

    Get PDF
    Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity, affects one fourth of young women and is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology and effective treatment strategies of endometriosis is still largely elusive. Inadequate immune and neuroendocrine responses are significantly involved in the pathophysiology of endometriosis, and key findings are summarized in the present review. We discuss here the role of different immune mechanisms particularly adhesion molecules, protein–glycan interactions, and pro-angiogenic mediators in the development and progression of the disease. Finally, we introduce the concept of endometrial dissemination as result of a neuroendocrine-immune disequilibrium in response to high levels of perceived stress caused by cardinal clinical symptoms of endometriosis

    Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis

    Get PDF
    The peritoneal metastatic route of cancer dissemination is shared by cancers of the ovary and gastrointestinal tract. Once initiated, peritoneal metastasis typically proceeds rapidly in a feed-forward manner. Several factors contribute to this efficient progression. In peritoneal metastasis, cancer cells exfoliate into the peritoneal fluid and spread locally, transported by peritoneal fluid. Inflammatory cytokines released by tumor and immune cells compromise the protective, anti-adhesive mesothelial cell layer that lines the peritoneal cavity, exposing the underlying extracellular matrix to which cancer cells readily attach. The peritoneum is further rendered receptive to metastatic implantation and growth by myofibroblastic cell behaviors also stimulated by inflammatory cytokines. Individual cancer cells suspended in peritoneal fluid can aggregate to form multicellular spheroids. This cellular arrangement imparts resistance to anoikis, apoptosis, and chemotherapeutics. Emerging evidence indicates that compact spheroid formation is preferentially accomplished by cancer cells with high invasive capacity and contractile behaviors. This review focuses on the pathological alterations to the peritoneum and the properties of cancer cells that in combination drive peritoneal metastasis

    The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis

    Get PDF
    Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05) and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05). The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05) in expression of genes associated with tumorigenesis (MAPK8, CDC6), epithelial-mesenchymal transition (NOTCH1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation

    Christ Walking on Water

    No full text
    corecore