54 research outputs found

    An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Get PDF
    Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted

    dTip60 HAT Activity Controls Synaptic Bouton Expansion at the Drosophila Neuromuscular Junction

    Get PDF
    Background: Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. Methods and Findings: Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, a-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. Conclusions: Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implication

    The NSL Complex Regulates Housekeeping Genes in Drosophila

    Get PDF
    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription

    Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy

    No full text
    Contains fulltext : 56887.pdf (publisher's version ) (Closed access)Individuals with hemiparetic cerebral palsy (HCP) display deviant motor output, predominantly on one side of the body. The question pursued here is whether HCP participants have the ability to anticipate the forthcoming perceptual-motor demands of the goal of an action sequence. Such anticipatory planning was necessary to successfully perform the tasks that were studied. In experiment I, HCP participants had to grasp a hexagonal knob with their unimpaired hand by choosing one of five possible grasping patterns (free choice) and consequently rotate it 60°, 120°, or 180° Clockwise or Counterclockwise. HCP participants showed a large amount of task failures that were persistent throughout the task. These findings suggest a deficit in anticipatory planning. No such task failures were observed for the control group. In addition, the instructed degree of rotation had less effect on the selected grasping pattern for the HCP participants than for the controls. In experiment II, we investigated if HCP participants are prone to use context information that is directly available in the task, instead of planning the forthcoming perceptual-motor demands. To that aim, an arrow was inserted at one of the sides of the hexagon in a position that had no relevance for the action to be planned and executed. The location of this arrow significantly affected the grip selected in the HCP participants, but not in controls. Overall, the results suggest an anticipatory planning deficit in HCP participants that may be caused by an impairment at the motor imagery level. Consequently, as an alternative strategy, performance in HCP participants was predominantly based on information directly available in the task context;12 p
    corecore