76 research outputs found

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Inherited duplications of PPP2R3B predispose to nevi and melanoma via a C21orf91-driven proliferative phenotype

    Get PDF
    Purpose Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. Methods Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. Results We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. Conclusion This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching

    Systematic MicroRNA Analysis Identifies ATP6V0C as an Essential Host Factor for Human Cytomegalovirus Replication

    Get PDF
    Recent advances in microRNA target identification have greatly increased the number of putative targets of viral microRNAs. However, it is still unclear whether all targets identified are biologically relevant. Here, we use a combined approach of RISC immunoprecipitation and focused siRNA screening to identify targets of HCMV encoded human cytomegalovirus that play an important role in the biology of the virus. Using both a laboratory and clinical strain of human cytomegalovirus, we identify over 200 putative targets of human cytomegalovirus microRNAs following infection of fibroblast cells. By comparing RISC-IP profiles of miRNA knockout viruses, we have resolved specific interactions between human cytomegalovirus miRNAs and the top candidate target transcripts and validated regulation by western blot analysis and luciferase assay. Crucially we demonstrate that miRNA target genes play important roles in the biology of human cytomegalovirus as siRNA knockdown results in marked effects on virus replication. The most striking phenotype followed knockdown of the top target ATP6V0C, which is required for endosomal acidification. siRNA knockdown of ATP6V0C resulted in almost complete loss of infectious virus production, suggesting that an HCMV microRNA targets a crucial cellular factor required for virus replication. This study greatly increases the number of identified targets of human cytomegalovirus microRNAs and demonstrates the effective use of combined miRNA target identification and focused siRNA screening for identifying novel host virus interactions

    Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling

    No full text
    Highly fluorescent stilbene and tolan cyclodextrin [2]rotaxanes have been synthesised in good yield using aqueous Suzuki coupling, and the crystal structure of one of these rotaxanes has been determined
    • …
    corecore