1,771 research outputs found

    1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4

    Get PDF
    The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair

    Characterization of extrasolar terrestrial planets from diurnal photometric variability

    Full text link
    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbor life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's properties. Here we report a model that predicts features that should be discernible in light curves obtained by low-precision photometry. For extrasolar planets similar to Earth we expect daily flux variations up to hundreds of percent, depending sensitively on ice and cloud cover. Qualitative changes in surface or climate generate significant changes in the predicted light curves. This work suggests that the meteorological variability and the rotation period of an Earth-like planet could be derived from photometric observations. Other properties such as the composition of the surface (e.g., ocean versus land fraction), climate indicators (for example ice and cloud cover), and perhaps even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.Comment: Published in Nature. 9 pages including 3 figure

    The fate of the homoctenids (Tentaculitoidea) during the Frasnian-Famennian mass extinction (Late Devonian)

    Get PDF
    The homoctenids (Tentaculitoidea) are small, conical-shelled marine animals which are amongst the most abundant and widespread of all Late Devonian fossils. They were a principal casualty of the Frasnian-Famennian (F-F, Late Devonian) mass extinction, and thus provide an insight into the extinction dynamics. Despite their abundance during the Late Devonian, they have been largely neglected by extinction studies. A number of Frasnian-Famennian boundary sections have been studied, in Poland, Germany, France, and the United States. These sections have yielded homoctenids, which allow precise recognition of the timing of the mass extinction. It is clear that the homoctenids almost disappear from the fossil record during the latest Frasnian β€œUpper Kellwasser Event”. The coincident extinction of this pelagic group, and the widespread development of intense marine anoxia within the water column, provides a causal link between anoxia and the F-F extinction. Most notable is the sudden demise of a group, which had been present in rock-forming densities, during this anoxic event. One new species, belonging to Homoctenus is described, but is not formally named here

    β€˜Functional Connectivity’ Is a Sensitive Predictor of Epilepsy Diagnosis after the First Seizure

    Get PDF
    Background: Although epilepsy affects almost 1 % of the world population, diagnosis of this debilitating disease is still difficult. The EEG is an important tool for epilepsy diagnosis and classification, but the sensitivity of interictal epileptiform discharges (IEDs) on the first EEG is only 30–50%. Here we investigate whether using β€˜functional connectivity ’ can improve the diagnostic sensitivity of the first interictal EEG in the diagnosis of epilepsy. Methodology/Principal Findings: Patients were selected from a database with 390 standard EEGs of patients after a first suspected seizure. Patients who were later diagnosed with epilepsy (i.e. $two seizures) were compared to matched nonepilepsy patients (with a minimum follow-up of one year). The synchronization likelihood (SL) was used as an index of functional connectivity of the EEG, and average SL per patient was calculated in seven frequency bands. In total, 114 patients were selected. Fifty-seven patients were diagnosed with epilepsy (20 had IEDs on their EEG) and 57 matched patients had other diagnoses. Epilepsy patients had significantly higher SL in the theta band than non-epilepsy patients. Furthermore, theta band SL proved to be a significant predictor of a diagnosis of epilepsy. When only those epilepsy patients without IEDs were considered (n = 74), theta band SL could predict diagnosis with specificity of 76 % and sensitivity of 62%. Conclusion/Significance: Theta band functional connectivity may be a useful diagnostic tool in diagnosing epilepsy

    Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b

    Get PDF
    Lysostaphin is a bacteriolytic enzyme targeting peptidoglycan, the essential component of the bacterial cell envelope. It displays a very potent and specific activity toward staphylococci, including methicillin-resistant Staphylococcus aureus. Lysostaphin causes rapid cell lysis and disrupts biofilms, and is therefore a therapeutic agent of choice to eradicate staphylococcal infections. The C-terminal SH3b domain of lysostaphin recognizes peptidoglycans containing a pentaglycine crossbridge and has been proposed to drive the preferential digestion of staphylococcal cell walls. Here we elucidate the molecular mechanism underpinning recognition of staphylococcal peptidoglycan by the lysostaphin SH3b domain. We show that the pentaglycine crossbridge and the peptide stem are recognized by two independent binding sites located on opposite sides of the SH3b domain, thereby inducing a clustering of SH3b domains. We propose that this unusual binding mechanism allows synergistic and structurally dynamic recognition of S. aureus peptidoglycan and underpins the potent bacteriolytic activity of this enzyme

    Crystal Structure of Outer Membrane Protein NMB0315 from Neisseria meningitidis

    Get PDF
    NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD) at a resolution of 2.4 Γ… and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Inefficient Nef-Mediated Downmodulation of CD3 and MHC-I Correlates with Loss of CD4+ T Cells in Natural SIV Infection

    Get PDF
    Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/Β΅l in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of naΓ―ve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation
    • …
    corecore